Flexible Synergistic MoS2 Quantum Dots/PEDOT: PSS Film Sensor for Acetaldehyde Sensing at Room Temperature

被引:15
|
作者
Jin, Ling [1 ]
Yang, Kai [1 ]
Chen, Lifan [1 ]
Yan, Ruran [1 ]
He, Lifang [1 ]
Ye, Mingfu [1 ,2 ]
Qiao, Hongbin [1 ]
Chu, Xiangfeng [1 ]
Gao, Hong [1 ]
Zhang, Kui [1 ]
机构
[1] Anhui Univ Technol, Sch Chem & Chem Engn, Maanshan 243032, Anhui, Peoples R China
[2] Anhui Univ, Anhui Prov Key Lab Chem Inorgan Organ Hybrid Funct, Hefei 230601, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
GAS SENSOR; HYDROTHERMAL SYNTHESIS; ZNO NANOARCHITECTURES; HIGH-RESPONSE; PERFORMANCE; DOTS; OXIDE; NANOPARTICLES; SENSITIVITY; FABRICATION;
D O I
10.1021/acs.analchem.3c00365
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Acetaldehyde (CH3CHO) is known as a primarycarcinogen,and the development of wearable gas sensors for its detection at roomtemperature has rarely been rarely reported. Herein, MoS2 quantum dots (MoS2 QDs) have been employed to dope withpoly-(3,4-ethylene-dioxythiophene): polystyrene-sulfonate(PEDOT: PSS) via a simple in situ polymerization technique, and theCH(3)CHO gas-sensing properties of the resultant flexibleand transparent film were investigated. MoS2 QDs had beenevenly dispersed into the polymer, and it was shown that PEDOT: PSSdoped with the 20 wt % MoS2 QDs sensor exhibited the highestresponse value of 78.8% against 100 ppm CH3CHO and itsdetection limit reached 1 ppm. Moreover, the sensor response remainedstable for more than 3 months. In particular, the different bendingangles (from 60 to 240 degrees) had little effect on the sensor responseto CH3CHO. The possible reason for the enhanced sensingproperties was attributed to the large number of reaction sites onthe MoS2 QDs and the direct charge transfer between theMoS(2) QDs and PEDOT: PSS. This work suggested a platformto inspire MoS2 QDs-doping PEDOT: PSS materials as wearablegas sensors for highly sensitive chemoresistive sensors to detectCH(3)CHO at room temperature.
引用
收藏
页码:8859 / 8868
页数:10
相关论文
共 50 条
  • [41] CsPbBr3 quantum dots enhanced ZnO sensing to NO2 at room temperature
    Yueyue, Li
    Siqi, Sun
    Yilin, Wang
    Fengmin, Liu
    Hongtao, Wang
    Jihao, Bai
    Min, Lu
    Geyu, Lu
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 368
  • [42] Reversible room temperature ammonia sensor based on the synthesized MoS2/PANI nanocomposites
    Ghaleghafi, Elahe
    Rahmani, Mohammad Bagher
    PHYSICA SCRIPTA, 2023, 98 (07)
  • [43] MoS2/MoO3 heterojunctions enabled by surface oxidization of MoS2 nanosheets for high-performance room-temperature NO2 gas sensing
    Yan, Jinlong
    Wang, Yanyan
    Yang, Cheng
    Deng, Haoyuan
    Hu, Nantao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [44] A fast response and highly sensitive flexible humidity sensor based on a nanocomposite film of MoS2 and graphene oxide
    Ge, Gengwu
    Ke, Ningfeng
    Ma, Hongliang
    Ding, Jie
    Zhang, Wendong
    Fan, Xuge
    NANOSCALE, 2024, 16 (38) : 17804 - 17816
  • [45] Ethylenediamine functionalized MoS2 quantum dots for terramycin sensing in environmental water and fish samples
    Yu, Xueping
    Meng, Yang
    Yan, Yue
    Jin, Xiaoyong
    Ni, Gang
    Peng, Juan
    MICROCHEMICAL JOURNAL, 2020, 152
  • [46] MoS2 based dual mine gas disaster sensor that operates at room temperature
    Wang, Luyu
    Song, Jia
    Ruan, Chenghai
    Xu, Shengyang
    Yu, Chunyang
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 359
  • [47] Biofunctionalized magnetic nanoparticles incorporated MoS2 nanocomposite for enhanced n-butanol sensing at room temperature
    Thayil, Ruchika
    Parne, Saidi Reddy
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [48] Far-field ammonia gas sensing at room temperature with graphene nanoplatelets-infused PEDOT:PSS transparent thin film
    Ganesan, Vinod K.
    Tan, Chun Hui
    Chee, Pei Song
    Low, Jen Hahn
    Lee, Soon Poh
    Lim, Eng Hock
    TALANTA OPEN, 2025, 11
  • [49] Spontaneous reduction of KMnO4 with MoS2 quantum dots for glutathione sensing in tumors
    Wang, Yong
    Cai, Lulu
    Wang, Qi
    Zhao, Mingming
    Dong, Lina
    Xu, Kai
    Li, Jingjing
    ANALYST, 2020, 145 (03) : 836 - 843
  • [50] Flexible MoS2 sensor arrays for high performance label-free ion sensing
    Li, Peng
    Zhang, Dongzhi
    Wu, Zhenling
    SENSORS AND ACTUATORS A-PHYSICAL, 2019, 286 : 51 - 58