Graphs of continuous functions and fractal dimensions

被引:20
|
作者
Verma, Manuj [1 ]
Priyadarshi, Amit [1 ]
机构
[1] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Box dimension; Graph of function; Continuous function; HAUSDORFF DIMENSION;
D O I
10.1016/j.chaos.2023.113513
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we show that, for any beta is an element of[1,2], a given strictly positive (or strictly negative) real-valued continuous function on [0, 1] whose graph has the upper box dimension less than or equal to beta can be decomposed as a product of two real-valued continuous functions on [0, 1] whose graphs have upper box dimensions equal to beta. We also obtain a formula for the upper box dimension of every element of a ring of polynomials in a finite number of continuous functions on [0, 1] over the field R.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] CONSTRUCTION OF MONOTONOUS APPROXIMATION BY FRACTAL INTERPOLATION FUNCTIONS AND FRACTAL DIMENSIONS
    Yu, Binyan
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (02)
  • [22] ON THE HEWITT-STROMBERG DIMENSION OF THE GRAPHS OF SUMS AND PRODUCTS OF CONTINUOUS FUNCTIONS
    Achour, Rim
    Li, Zhiming
    Selmi, Bilel
    Wang, Tingting
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2025, 33 (01)
  • [23] Hausdorff and Box dimensions of continuous functions and lineability
    Bonilla, A.
    Munoz-Fernandez, G. A.
    Prado-Bassas, J. A.
    Seoane-Sepulveda, J. B.
    LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (04) : 593 - 606
  • [24] Dimensions of prevalent continuous functions
    V. Gruslys
    J. Jonušas
    V. Mijović
    O. Ng
    L. Olsen
    I. Petrykiewicz
    Monatshefte für Mathematik, 2012, 166 : 153 - 180
  • [25] Dimensions of prevalent continuous functions
    Gruslys, V.
    Jonusas, J.
    Mijovic, V.
    Ng, O.
    Olsen, L.
    Petrykiewicz, I.
    MONATSHEFTE FUR MATHEMATIK, 2012, 166 (02): : 153 - 180
  • [26] Progress on Fractal Dimensions of the Weierstrass Function and Weierstrass-Type Functions
    Qiu, Yue
    Liang, Yongshun
    FRACTAL AND FRACTIONAL, 2025, 9 (03)
  • [27] RESEARCH ON FRACTAL DIMENSIONS AND THE HÖLDER CONTINUITY OF FRACTAL FUNCTIONS UNDER OPERATIONS
    Yu, Binyan
    Liang, Yongshun
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024, 32 (03)
  • [28] Copulae, Self-Affine Functions, and Fractal Dimensions
    Enrique de Amo
    Manuel Díaz Carrillo
    Juan Fernández Sánchez
    Mediterranean Journal of Mathematics, 2014, 11 : 1275 - 1287
  • [29] Copulae, Self-Affine Functions, and Fractal Dimensions
    de Amo, Enrique
    Diaz Carrillo, Manuel
    Fernandez Sanchez, Juan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (04) : 1275 - 1287
  • [30] Multivariate Fractal Functions in Some Complete Function Spaces and Fractional Integral of Continuous Fractal Functions
    Pandey, Kshitij Kumar
    Viswanathan, Puthan Veedu
    FRACTAL AND FRACTIONAL, 2021, 5 (04)