A geometric characterisation of real C*-algebras

被引:0
作者
Chu, Cho-Ho [1 ]
机构
[1] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
real C*-algebra; Banach manifold; Finsler symmetric cone; Jordan algebra; SPACES;
D O I
10.1007/s11425-022-2041-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterise the positive cone of a real C*-algebra geometrically. Given an open cone O in a real Banach space V, with the closure (O) over bar, we show that O is the interior of the positive cone of a unital real C*-algebra if and only if it is a Finsler symmetric cone with an orientable extension, which is equivalent to the condition that V is, in an equivalent norm, the Hermitian part of a unital real C*-algebra with the positive cone (O) over bar.
引用
收藏
页码:2277 / 2292
页数:16
相关论文
共 20 条
[1]  
Alfsen E M., 1976, NONCOMMUTATIVE SPECT
[2]  
ALFSEN EM, 1979, P LOND MATH SOC, V38, P497
[3]  
ALFSEN EM, 1980, ACTA MATH-DJURSHOLM, V144, P267, DOI 10.1007/BF02392126
[4]  
[Anonymous], 1982, Notes on Real and Complex C-algebras
[5]   HOLOMORPHIC CHARACTERIZATION OF JORDAN CSTAR-ALGEBRAS [J].
BRAUN, R ;
KAUP, W ;
UPMEIER, H .
MATHEMATISCHE ZEITSCHRIFT, 1978, 161 (03) :277-290
[6]  
Chu C.-H., 2012, JORDAN STRUCTURES GE
[7]  
Chu C-H., 2020, Bounded symmetric domains in Banach spaces, DOI 10.1142/11659
[8]  
Chu C-H., 1988, EXPO MATH, V6, P65
[9]   Siegel domains over Finsler symmetric cones [J].
Chu, Cho-Ho .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021, 778 :145-169
[10]   ON HOMOMORPHIC IMAGES OF SPECIAL JORDAN ALGEBRAS [J].
COHN, PM .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1954, 6 (02) :253-264