Nitrogen-rich Graphite Flake from Hemp as Anode Material for High Performance Lithium-ion Batteries

被引:6
作者
Wang, Peng-Fei [1 ]
Sui, Bin-Bin [1 ]
Sha, Lin [1 ]
Gong, Zhe [2 ]
Zhang, Yu-Hang [1 ]
Wu, Yu-Han [1 ]
Zhao, Li-Na [1 ]
Shi, Fa-Nian [1 ]
机构
[1] Shenyang Univ Technol, Sch Environm & Chem Engn, Key Lab Polymer & Catalyst Synth Technol Liaoning, Shenyang 110870, Peoples R China
[2] Shenyang Univ Chem Technol, Coll Chem Engn, Shenyang 110870, Peoples R China
基金
中国国家自然科学基金;
关键词
Anode material; Biomass carbon; Lithium-ion batteries; Performance optimization; POROUS CARBON; POTASSIUM-ION; EGG-WHITE; GREEN; MXENE; SHELL;
D O I
10.1002/asia.202300279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Biomass-derived carbon (BC) has attracted extensive attention as anode material for lithium ion batteries (LiBs) due to its natural hierarchical porous structure and rich heteroatoms that can adsorb Li+. However, the specific surface area of pure biomass carbon is generally small, so we can help NH3 and inorganic acid produced by urea decomposition to strip biomass, improve its specific surface area and enrich nitrogen elements. The nitrogen-rich graphite flake obtained by the above treatment of hemp is named NGF. The product that has a high nitrogen content of 10.12% has a high specific surface area of 1151.1 m(2) g(-1). In the lithium ion battery test, the capacity of NGF is 806.6 mAh g(-1) at 30 mA g(-1), which is twice than that of BC. NGF also showed excellent performance that is 429.2 mAh g(-1) under high current testing at 2000 mA g(-1). The reaction process kinetics is analyzed and we found that the outstanding rate performance is attributed to the large-scale capacitance control. In addition, the results of the constant current intermittent titration test indicate that the diffusion coefficient of NGF is greater than that of BC. This work proposes a simple method of nitrogen-rich activated carbon, which has a significantly commercial prospect.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Composite of graphite/phosphorus as anode for lithium-ion batteries
    Bai, Aojun
    Wang, Li
    Li, Yang
    He, Xiangming
    Wang, Jixian
    Wang, Jianlong
    JOURNAL OF POWER SOURCES, 2015, 289 : 100 - 104
  • [32] A double-layer-coated graphite anode material for high-rate lithium-ion batteries
    Dan, Jianglei
    Jin, Chenxin
    Wen, Lijun
    Xu, Guojun
    Li, Xiaomin
    Sun, Fugen
    Zhou, Lang
    Yue, Zhihao
    SOLID STATE SCIENCES, 2023, 141
  • [33] Synthesis and Performance of Nano MnO as an Anode Material for Lithium-Ion Batteries
    Ding Peng
    Xu You-Long
    Sun Xiao-Fei
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (02) : 293 - 297
  • [34] Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries
    Guo, Peng
    Song, Huaihe
    Chen, Xiaohong
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (06) : 1320 - 1324
  • [35] Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries
    Ni, Haifang
    Song, Weili
    Fan, Lizhen
    PROGRESS IN NATURAL SCIENCE-MATERIALS INTERNATIONAL, 2016, 26 (03) : 283 - 288
  • [36] Double carbon decorated lithium titanate as anode material with high rate performance for lithium-ion batteries
    Haifang Ni
    Weili Song
    Lizhen Fan
    ProgressinNaturalScience:MaterialsInternational, 2016, 26 (03) : 283 - 288
  • [37] Graphene foam as a stable anode material in lithium-ion batteries
    Yang, Jianhang
    Sagar, Rizwan Ur Rehman
    Anwar, Tauseef
    Li, Xiaocheng
    Qian, Zhang
    Liang, Tongxiang
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (04) : 5226 - 5234
  • [38] NiO/Graphene Nanocomposite as Anode Material for Lithium-Ion Batteries
    Zhu, Yun-Guang
    Cao, Gao-Shao
    Xie, Jian
    Zhu, Tie-Jun
    Zhao, Xin-Bing
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2012, 4 (01) : 35 - 40
  • [39] Scalable synthesis of a novel structured graphite/silicon/pyrolyzed-carbon composite as anode material for high-performance lithium-ion batteries
    Li, Jin
    Wang, Jiantao
    Yang, Juanyu
    Ma, Xiaoli
    Lu, Shigang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 1072 - 1079
  • [40] Graphite recycling from spent lithium-ion batteries for fabrication of high-performance aluminum-ion batteries
    Wang, Li
    Wang, Chao
    Zhang, Jing-Yi
    Qiu, Jia-Cheng
    Fu, Xu-Wang
    Zhang, Zi-Rui
    Feng, Jian-Min
    Dong, Lei
    Long, Cong-Lai
    Li, De-Jun
    Wang, Xiao-Wei
    Zhang, Bao
    Zhang, Jia-Feng
    Zhao, Rui-Rui
    RARE METALS, 2024, 43 (05) : 2161 - 2171