Generalized symmetries as homotopy Lie algebras

被引:0
|
作者
Jonke, Larisa [1 ,2 ]
机构
[1] Rudjer Boskovic Inst, Div Theoret Phys, Bijenicka 54, Zagreb 1000, Croatia
[2] Dublin Inst Adv Studies, Sch Theoret Phys, 10 Burlington Rd, Dublin, Ireland
关键词
NONCOMMUTATIVE GEOMETRY; FIELD-THEORY; DUALITY;
D O I
10.1140/epjs/s11734-023-00841-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Homotopy Lie algebras are a generalization of differential graded Lie algebras encoding both the kinematics and dynamics of a given field theory. Focusing on kinematics, we show that these algebras provide a natural framework for the description of generalized gauge symmetries using two specific examples. The first example deals with the non-commutative gauge symmetry obtained using Drinfel'd twist of the symmetry Hopf algebra. The homotopy Lie algebra compatible with the twisted gauge symmetry turns out to be the recently proposed braided L-8-algebra. In the second example, we focus on the generalized gauge symmetry of the double field theory. The symmetry includes both diffeomorphisms and gauge transformation and can consistently be defined using a curved L-8-algebra.
引用
收藏
页码:3715 / 3721
页数:7
相关论文
共 50 条
  • [21] Graded differential Lie algebras and model building
    Wulkenhaar, R
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 25 (3-4) : 305 - 325
  • [22] DOUBLE AFFINE LIE ALGEBRAS AND FINITE GROUPS
    Guay, Nicolas
    Hernandez, David
    Loktev, Sergey
    PACIFIC JOURNAL OF MATHEMATICS, 2009, 243 (01) : 1 - 41
  • [23] On a certain construction of graded Lie algebras with derivation
    Matthes, R
    Rudolph, G
    Wulkenharr, R
    JOURNAL OF GEOMETRY AND PHYSICS, 1996, 20 (2-3) : 107 - 141
  • [24] q-deformed quantum Lie algebras
    Schmidt, Alexander
    Wachter, Hartmut
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (11) : 2289 - 2325
  • [25] SHIFTED DOUBLE LIE-RINEHART ALGEBRAS
    Leray, Johan
    THEORY AND APPLICATIONS OF CATEGORIES, 2020, 35 : 594 - 621
  • [26] Generalized Poincare algebras, Hopf algebras and κ-Minkowski spacetime
    Kovacevic, D.
    Meljanac, S.
    Pachol, A.
    Strajn, R.
    PHYSICS LETTERS B, 2012, 711 (01) : 122 - 127
  • [27] A∞ algebras from slightly broken higher spin symmetries
    Alexey Sharapov
    Evgeny Skvortsov
    Journal of High Energy Physics, 2019
  • [28] Remarks on generalized Fedosov algebras
    Dobrski, Michal
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2015, 12 (09)
  • [29] Symplectic embeddings, homotopy algebras and almost Poisson gauge symmetry
    Kupriyanov, Vladislav G.
    Szabo, Richard J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2022, 55 (03)
  • [30] GENERALIZED KINEMATICS ON ρ-COMMUTATIVE ALGEBRAS
    Peyghan, E.
    Bagheri, Z.
    Gultekin, I
    Gezer, A.
    REPORTS ON MATHEMATICAL PHYSICS, 2020, 85 (03) : 399 - 426