Inequalities for the broken k-diamond partition functions

被引:6
作者
Jia, Dennis X. Q. [1 ]
机构
[1] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
The higher order Tur?n inequalities; The broken k-diamond partition; functions; The Jensen polynomials; Finite difference; JENSEN POLYNOMIALS; LOG-CONCAVITY; CONGRUENCES; ANDREWS; TURAN;
D O I
10.1016/j.jnt.2023.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 2007, Andrews and Paule introduced the broken k -diamond partition function Delta k(n). Many researches on the arithmetic properties for Delta k(n) have been done. In this paper, we prove that D3 log Delta 1(n - 1) > 0 for n > 5 and D3 log Delta 2(n - 1) > 0 for n > 7, where D is the difference operator with respect to n. We also conjecture that for any k > 1 and r > 1, there exists a positive integer nk(r) such that for n > nk(r), (-1)rDr log Delta k(n) > 0. This is analogous to the positivity of finite differences of the logarithm of the partition function, which has been proved by Chen, Wang, and Xie. Furthermore, we obtain that both {Delta 1(n)}n >= 0 and {Delta 2(n)}n >= 0 satisfy the higher order Turan inequalities for n > 6.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:314 / 347
页数:34
相关论文
共 34 条
  • [1] MacMahon's Partition Analysis VIII. Plane partition diamonds
    Andrews, GE
    Paule, P
    Riese, A
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) : 231 - 242
  • [2] MacMahon's partition analysis XI: Broken diamonds and modular forms
    Andrews, George E.
    Paule, Peter
    [J]. ACTA ARITHMETICA, 2007, 126 (03) : 281 - 294
  • [3] [Anonymous], 2002, Analytic theory of polynomials, DOI DOI 10.1093/bioinformatics/btp616
  • [4] [Anonymous], 1977, 2 YEAR COLL MATH J
  • [5] Bringmann K., 2021, T AM MATH SOC SER B, V8, P615
  • [6] Some congruences for Andrews-Paule's broken 2-diamond partitions
    Chan, Song Heng
    [J]. DISCRETE MATHEMATICS, 2008, 308 (23) : 5735 - 5741
  • [7] HIGHER ORDER TURAN INEQUALITIES FOR THE PARTITION FUNCTION
    Chen, William Y. C.
    Jia, Dennis X. Q.
    Wang, Larry X. W.
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (03) : 2143 - 2165
  • [8] Chen WYC, 2017, LOND MATH S, V440, P141
  • [9] FINITE DIFFERENCES OF THE LOGARITHM OF THE PARTITION FUNCTION
    Chen, William Y. C.
    Wang, Larry X. W.
    Xie, Gary Y. B.
    [J]. MATHEMATICS OF COMPUTATION, 2016, 85 (298) : 825 - 847
  • [10] Ramanujan-type congruences for broken 2-diamond partitions modulo 3
    Chen, William Y. C.
    Fan, Anna R. B.
    Yu, Rebecca T.
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) : 1553 - 1560