Nonreciprocal Phonon Propagation in a Metallic Chiral Magnet

被引:6
|
作者
Nomura, T. [1 ,2 ]
Zhang, X. -X. [3 ]
Takagi, R. [4 ,5 ]
Karube, K. [3 ]
Kikkawa, A. [3 ]
Taguchi, Y. [3 ]
Tokura, Y. [3 ,4 ,6 ]
Zherlitsyn, S. [7 ]
Kohama, Y. [1 ]
Seki, S. [4 ,5 ]
机构
[1] Univ Tokyo, Inst Solid State Phys, Kashiwa, Chiba 2778581, Japan
[2] Tokyo Denki Univ, Adachi, Tokyo 1208551, Japan
[3] RIKEN Ctr Emergent Matter Sci CEMS, Wako 3510198, Japan
[4] Univ Tokyo, Dept Appl Phys, Tokyo 1138656, Japan
[5] Japan Sci & Technol Agcy JST, PRESTO, Kawaguchi 3320012, Japan
[6] Univ Tokyo, Tokyo Coll, Tokyo 1138656, Japan
[7] Helmholtz Zentrum Dresden Rossendorf, Hochfeld Magnetlabor Dresden HLD EMFL, D-01328 Dresden, Germany
关键词
SPIN-WAVES; SKYRMIONS; ANISOTROPY; DEFORMATION; TRANSITION;
D O I
10.1103/PhysRevLett.130.176301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The phonon magnetochiral effect (MChE) is the nonreciprocal acoustic and thermal transports of phonons caused by the simultaneous breaking of the mirror and time-reversal symmetries. So far, the phonon MChE has been observed only in a ferrimagnetic insulator Cu2OSeO3, where the nonreciprocal response disappears above the Curie temperature of 58 K. Here, we study the nonreciprocal acoustic properties of a room -temperature ferromagnet Co9Zn9Mn2 for unveiling the phonon MChE close to room temperature. Surprisingly, the nonreciprocity in this metallic compound is enhanced at higher temperatures and observed up to 250 K. This clear contrast between insulating Cu2OSeO3 and metallic Co9Zn9Mn2 suggests that metallic magnets have a mechanism to enhance the nonreciprocity at higher temperatures. From the ultrasound and microwave-spectroscopy experiments, we conclude that the magnitude of the phonon MChE of Co9Zn9Mn2 mostly depends on the Gilbert damping, which increases at low temperatures and hinders the magnon-phonon hybridization. Our results suggest that the phonon nonreciprocity could be further enhanced by engineering the magnon band of materials.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Rare-Earth Permanent Magnet SmCo5 for Chiral Interfacial Spin-Orbitronics
    Zhou, Heng-An
    Liu, Jiahao
    Wang, Zidong
    Zhang, Qihan
    Xu, Teng
    Dong, Yiqing
    Zhao, Le
    Je, Soong-Geun
    Im, Mi-Young
    Xu, Kun
    Zhu, Jing
    Jiang, Wanjun
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (46)
  • [22] Lattice Solutions in a Ginzburg-Landau Model for a Chiral Magnet
    Li, Xinye
    Melcher, Christof
    JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 3389 - 3420
  • [23] Thermal conduction and phonon propagation in pressure-amorphized ices
    English, Niall J.
    Tse, John S.
    PHYSICAL REVIEW B, 2011, 83 (18)
  • [24] Metallic glass-based chiral nanolattice: Light weight, auxeticity, and superior mechanical properties
    Sha, Z. D.
    She, C. M.
    Xu, G. K.
    Pei, Q. X.
    Liu, Z. S.
    Wang, T. J.
    Gao, H. J.
    MATERIALS TODAY, 2017, 20 (10) : 569 - 576
  • [25] Nonreciprocal propagation of hybrid electromagnetic waves in a layered ferrite-ferroelectric structure with a finite width
    Sadovnikov, A. V.
    Bublikov, K. V.
    Beginin, E. N.
    Sheshukova, S. E.
    Sharaevskii, Yu. P.
    Nikitov, S. A.
    JETP LETTERS, 2015, 102 (03) : 142 - 147
  • [26] Topological Melting of the Metastable Skyrmion Lattice in the Chiral Magnet Co9Zn9Mn2
    Ukleev, Victor
    Morikawa, Daisuke
    Karube, Kosuke
    Kikkawa, Akiko
    Shibata, Kiyou
    Taguchi, Yasujiro
    Tokura, Yoshinori
    Arima, Taka-hisa
    White, Jonathan S.
    ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (11)
  • [27] On the mechanism of fatigue crack propagation in ductile metallic materials
    Pippan, R.
    Zelger, C.
    Gach, E.
    Bichler, C.
    Weinhandl, H.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2011, 34 (01) : 1 - 16
  • [28] Harmonic plane wave propagation in anisotropic chiral media
    Hillion, Pierre
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 2008, 28 (03) : 337 - 350
  • [29] Transformation between meron and skyrmion topological spin textures in a chiral magnet
    Yu, X. Z.
    Koshibae, W.
    Tokunaga, Y.
    Shibata, K.
    Taguchi, Y.
    Nagaosa, N.
    Tokura, Y.
    NATURE, 2018, 564 (7734) : 95 - +
  • [30] Reversible "triple-Q" elastic field structures in a chiral magnet
    Hu, Yangfan
    Wang, Biao
    SCIENTIFIC REPORTS, 2016, 6