CrP Nanocatalyst within Porous MOF Architecture to Accelerate Polysulfide Conversion in Lithium-Sulfur Batteries

被引:31
作者
Wang, Xiaoming [1 ]
Zhang, Huigang [2 ]
Jiao, Huan [1 ]
Zhang, Xinrui [1 ]
Shen, Zihan [2 ]
Wen, Yang [3 ]
He, Qiya [3 ]
Yao, Jun [1 ]
Cheng, Huiting [3 ]
Gao, Ting [3 ]
机构
[1] Shaanxi Normal Univ, Sch Chem & Chem Engn, Key Lab Macromol Sci Shaanxi Prov, Shaanxi Key Lab Adv Energy Devices,Shaanxi Engn La, Xian 710062, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Inst Proc Engn, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Northwest Univ, Low Carbon Technol Applicat Inst, Sch Chem & Engn, Shaanxi Key Lab Degradable Biomed Mat, Xian 710069, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
lithium-sulfur batteries; electrocatalysts; shuttle effect; porous polyhedra; transition-metal phosphides; CATHODE;
D O I
10.1021/acsami.3c01427
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Lithium-sulfur (Li-S) batteries demonstrate great potential for next generation electrochemical energy storage systems because of their high specific energy and low-cost materials. However, the shuttling behavior and slow kinetics of intermediate polysulfide (PS) conversion pose a major obstacle to the practical application of Li-S batteries. Herein, CrP within a porous nanopolyhedron architecture derived from a metal- organic framework (CrP@MOF) is developed as a highly efficient nanocatalyst and S host to address these issues. Theoretical and experimental analyses demonstrate that CrP@ MOF has a remarkable binding strength to trap soluble PS species. In addition, CrP@ MOF shows abundant active sites to catalyze the PS conversion, accelerate Li-ion diffusion, and induce the precipitation/decomposition of Li2S. As a result, the CrP@MOFcontaining Li-S batteries demonstrate over 67% capacity retention over 1000 cycles at 1 C, similar to 100% Coulombic efficiency, and high rate capability (674.6 mAh g-1 at 4 C). In brief, CrP nanocatalysts accelerate the PS conversion and improve the overall performance of Li-S batteries.
引用
收藏
页码:21040 / 21048
页数:9
相关论文
共 49 条
[1]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[2]   Recharacterization of superior limbic keratoconjunctivitis via a subdividing grading method in 236 Chinese patients [J].
Cheng, Chao ;
Zhu, Minyi ;
Lin, Tianlan ;
Chen, Ziyan ;
Zeng, Weiting ;
Li, Kunke ;
Xue, Ran ;
Duan, Fang ;
Wu, Kaili .
GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 2022, 260 (07) :2291-2298
[3]   Cathode Composites for Li-S Batteries via the Use of Oxygenated Porous Architectures [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Nouar, Farid ;
Davoisne, Carine ;
Devic, Thomas ;
Gonbeau, Danielle ;
Dominko, Robert ;
Serre, Christian ;
Ferey, Gerard ;
Tarascon, Jean-Marie .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (40) :16154-16160
[4]   Synergistic Design of Cathode Region for the High-Energy-Density Li-S Batteries [J].
Fan, Chao-Ying ;
Liu, Si-Yu ;
Li, Huan-Huan ;
Wang, Hai-Feng ;
Wang, Han-Chi ;
Wu, Xing-Long ;
Sun, Hai-Zhu ;
Zhang, Jing-Ping .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (42) :28689-28699
[5]   Flame-Retardant and Polysulfide-Suppressed Ether-Based Electrolytes for High-Temperature Li-S Batteries [J].
He, Mengxue ;
Li, Xia ;
Holmes, Nathaniel Graham ;
Li, Ruying ;
Wang, Jiajun ;
Yin, Geping ;
Zuo, Pengjian ;
Sun, Xueliang .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (32) :38296-38304
[6]   Regulated Electrodeposition of Na Metal in Monolithic ZIF-Pillared Graphene Anodes [J].
He, Qiya ;
Jin, Xin ;
Li, Zhonghua ;
Cai, Ziqiang ;
Tian, Jiaming ;
Hui, Junfeng ;
Zhang, Huigang .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (01) :1203-1211
[7]   Transition metal phosphides: new generation cathode host/separator modifier for Li-S batteries [J].
Huang, Song ;
Huixiang, Edison ;
Yang, Yang ;
Zhang, Yufei ;
Ye, Minghui ;
Li, Cheng Chao .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (12) :7458-7480
[8]  
Ji XL, 2009, NAT MATER, V8, P500, DOI [10.1038/nmat2460, 10.1038/NMAT2460]
[9]   Expediting the Conversion of Li2S2 to Li2S Enables High-Performance Li-S Batteries [J].
Jin, Zhanshuang ;
Lin, Tianning ;
Jia, Hongfeng ;
Liu, Bingqiu ;
Zhang, Qi ;
Li, Lu ;
Zhang, Lingyu ;
Su, Zhong-min ;
Wang, Chungang .
ACS NANO, 2021, 15 (04) :7318-7327
[10]   Highly Crosslinked Conductive Polymer Nanofibrous Films for High-Rate Solid-State Supercapacitors and Electromagnetic Interference Shielding [J].
Lai, Haoran ;
Bai, Congrui ;
Wang, Yaqin ;
Fan, Zhaoyang ;
Yuan, Ye ;
Too, Huan .
ADVANCED MATERIALS INTERFACES, 2022, 9 (09)