Multi-objective optimization of biogas systems producing hydrogen and electricity with solid oxide fuel cells

被引:15
作者
Nakashima, R. Nogueira [1 ]
Oliveira Jr, S. [1 ]
机构
[1] Univ Sao Paulo, Polytech Sch, Dept Mech Engn, Av Prof Mello Moraes,2231,Cidade Univ, Sao Paulo, SP, Brazil
关键词
Biogas; Solid oxide fuel cell; Hydrogen; Optimization; Economic assessment; Exergy analysis; ANAEROBIC-DIGESTION; ECONOMIC-ASSESSMENT; MODEL; HEAT; GASIFICATION; BIOMASS; EXERGY; PERFORMANCE; CONVERSION; VARIABLES;
D O I
10.1016/j.ijhydene.2021.08.195
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The design of solid oxide fuel cells (SOFC) using biogas for distributed power generation is a promising alternative to reduce greenhouse gas emissions in the energy and waste man-agement sectors. Furthermore, the high efficiency of SOFCs in conjunction with the pos-sibility to produce hydrogen may be a financially attractive option for biogas plants. However, the influence of design variables in the optimization of revenues and efficiency has seldom been studied for these novel cogeneration systems. Thus, in order to fulfill this knowledge gap, a multi-objective optimization problem using the NSGA-II algorithm is proposed to evaluate optimal solutions for systems producing hydrogen and electricity from biogas. Moreover, a mixed-integer linear optimization routine is used to ensure an efficient heat recovery system with minimal number of heat exchanger units. The results indicate that hydrogen production with a fuel cell downstream is able to achieve high exergy efficiencies (65-66%) and a drastic improvement in net present value (1346%) compared with sole power generation. Despite the additional equipment, the investment costs are estimated to be quite similar (12% increase) to conventional steam reforming systems and the levelized cost of hydrogen is very competitive (2.27 USD/kgH2).(c) 2021 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:11806 / 11822
页数:17
相关论文
共 50 条
  • [31] Modeling and optimization of fuel cell systems combined with a gasifier for producing heat and electricity
    Zhou, Jincheng
    Alsharif, Sameer
    Alizadeh, Asad
    Ali, Masood Ashraf
    Chaturvedi, Rishabh
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 52 : 642 - 662
  • [32] On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells
    Abdelkareem, Mohammad Ali
    Tanveer, Waqas Hassan
    Sayed, Enas Taha
    Assad, M. El Haj
    Allagui, Anis
    Cha, S. W.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 101 : 361 - 375
  • [33] Multi-objective genetic optimization of the thermoelectric system for thermal management of proton exchange membrane fuel cells
    Kwan, Trevor Hocksun
    Wu, Xiaofeng
    Yao, Qinghe
    APPLIED ENERGY, 2018, 217 : 314 - 327
  • [34] On the feasibility of on-farm biogas-to-electricity conversion: To what extent is solid oxide fuel cells durability a threat to break even the initial investment?
    Baldinelli, A.
    Barelli, L.
    Bidini, G.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (35) : 16971 - 16985
  • [35] Multi-objective optimization of a pressurized solid oxide fuel cell - gas turbine hybrid system integrated with seawater reverse osmosis
    Eveloy, Valerie
    Rodgers, Peter
    Al Alili, Ali
    ENERGY, 2017, 123 : 594 - 614
  • [36] Exergy & economic analysis of biogas fueled solid oxide fuel cell systems
    Siefert, Nicholas S.
    Litster, Shawn
    JOURNAL OF POWER SOURCES, 2014, 272 : 386 - 397
  • [37] Multi-objective optimization and comparative performance analysis of hybrid biomass-based solid oxide fuel cell/solid oxide electrolyzer cell/gas turbine using different gasification agents
    Habibollahzade, Ali
    Gholamian, Ehsan
    Behzadi, Amirmohammad
    APPLIED ENERGY, 2019, 233 : 985 - 1002
  • [38] Two strategies for multi-objective optimisation of solid oxide fuel cell stacks
    Roshandel, Ramin
    Forough, Atefeh Behzadi
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENERGY, 2014, 33 (04) : 854 - 868
  • [39] Investigation of a Cogeneration System Combining a Solid Oxide Fuel Cell and the Organic Rankine Cycle: Parametric Analysis and Multi-Objective Optimization
    Yang, Sheng
    Liang, Anman
    Jin, Zhengpeng
    Xie, Nan
    PROCESSES, 2024, 12 (12)
  • [40] Design and multi-objective optimization of co-production system of hydrogen and electricity via integration of methanol steam reforming, fuel cell and electrochemical hydrogen pump
    Cheng, Andi
    Yi, Huijun
    Xiao, Wu
    Ruan, Xuehua
    Jiang, Xiaobin
    He, Gaohong
    ENERGY, 2025, 324