Extensions of toric line bundles

被引:1
作者
Altmann, Klaus [1 ]
Flatt, Amelie [2 ]
Hille, Lutz [3 ]
机构
[1] FU Berlin, Inst Math, Konigin Luise Str 24-26, D-14195 Berlin, Germany
[2] HU Berlin, Inst Math, Rudower Chaussee 25, D-12489 Berlin, Germany
[3] Univ Munster, Math Inst, Einsteinstr 62, D-48149 Munster, Germany
关键词
D O I
10.1007/s00209-023-03206-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any two nef line bundles L+ := O-X(?(+)) and L- := O-X (?(-)) on a toric variety X represented by lattice polyhedra ?(+) respectively ?(-), we present the universal equivariant extension of L- by L+ under use of the connected components of the set theoretic difference ?(-) \ ?(+).
引用
收藏
页数:26
相关论文
共 14 条
  • [1] Altmann K, 2020, IZV MATH+, V84, P683, DOI [10.1070/IM8948, 10.4213/im8948]
  • [2] Altmann K, 2020, PURE APPL MATH Q, V16, P1147
  • [3] [Anonymous], 2002, Proceedings of the International Congress of Mathematicians, VII, P599
  • [4] Cox DA., 2011, TORIC VARIETIES GRAD
  • [5] Danilov V. I., 1978, USPEKHI MAT NAUK, P97, DOI 10.1070/RM1978v033n02ABEH002305
  • [6] Demazure M., 1970, ANN SCI ECOLE NORM S, V3, P507
  • [7] Di Rocco S., 2014, T AM MATH SOC, V370, P09
  • [8] Fulton W., 1993, INTRO TORIC VARIETIE, DOI DOI 10.1515/9781400882526
  • [9] Kaveh Kiumars, ARXIV
  • [10] TORIC BUNDLES AND PROBLEMS OF LINEAR ALGEBRA
    KLYACHKO, AA
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) : 135 - 137