Harnessing wrinkling morphologies of graphene on soft substrates for mechanically programmable interfacial thermal conductance

被引:4
作者
Liu, Qingchang [1 ]
Xu, Baoxing [1 ]
机构
[1] Univ Virginia, Dept Mech & Aerosp Engn, Charlottesville, VA 22904 USA
基金
美国国家科学基金会;
关键词
interfacial thermal conductance; wrinkled graphene; pump-probe; atomic interaction; mechanical loading; HEAT-CONDUCTION; TRANSPORT; MONOLAYER; ADHESION; CONTACT;
D O I
10.1007/s12274-023-5565-6
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Strain engineering has been leveraged to tune the thermal properties of materials by introducing stress and manipulating local atomic vibrations, which poses a detrimental threat to the mechanical integrity of materials and structures and limits the capability to regulate thermal transport. Here, we report that the interfacial thermal conductance of graphene on a soft substrate can be regulated by harnessing wrinkling and folding morphologies of graphene, which could be well controlled by managing the pre-strain applied to the substrate. These obtained graphene structures are free of significant in-plane mechanical strain and only have infinitesimal distortion to the intrinsic thermal properties of graphene. The subsequent thermal transport studies with pump-probe non-equilibrium molecular dynamics (MD) simulation show that the thermal conductance between graphene structures and the substrate is uniquely determined by the morphological features of graphene. The atomic density of interfacial interactions, energy dissipation, and temperature distribution are elucidated to understand the thermal transport across each graphene structure and substrate. We further demonstrate that the normalized thermal conductance decreases monotonically with the increase of the equivalent mechanical strain, showing the capability of mechanically programmable interfacial thermal conductance in a broad range of strains. Application demonstrations in search of on-demand thermal conductance are conducted by controlling the geometric morphologies of graphene. This study lays a foundation for regulating interfacial thermal conductance through mechanical loading-induced geometric deformation of materials on a soft substrate, potentially useful in the design of flexible and stretchable structures and devices with tunable thermal management performance.
引用
收藏
页码:9608 / 9617
页数:10
相关论文
共 69 条
[1]   Tunable macroscale structural superlubricity in two-layer graphene via strain engineering [J].
Androulidakis, Charalampos ;
Koukaras, Emmanuel N. ;
Paterakis, George ;
Trakakis, George ;
Galiotis, Costas .
NATURE COMMUNICATIONS, 2020, 11 (01)
[2]   Strain engineering of ZnO thermal conductivity [J].
Antonio Seijas-Bellido, Juan ;
Rurali, Riccardo ;
Iniguez, Jorge ;
Colombo, Luciano ;
Melis, Claudio .
PHYSICAL REVIEW MATERIALS, 2019, 3 (06)
[3]   Macroscale superlubricity enabled by graphene nanoscroll formation [J].
Berman, Diana ;
Deshmukh, Sanket A. ;
Sankaranarayanan, Subramanian K. R. S. ;
Erdemir, Ali ;
Sumant, Anirudha V. .
SCIENCE, 2015, 348 (6239) :1118-1122
[4]   Adhesion mechanics of graphene membranes [J].
Bunch, J. S. ;
Dunn, M. L. .
SOLID STATE COMMUNICATIONS, 2012, 152 (15) :1359-1364
[5]   Boron arsenide heterostructures: lattice-matched heterointerfaces and strain effects on band alignments and mobility [J].
Bushick, Kyle ;
Chae, Sieun ;
Deng, Zihao ;
Heron, John T. ;
Kioupakis, Emmanouil .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[6]   Geometry and temperature effects of the interfacial thermal conductance in copper- and nickel-graphene nanocomposites [J].
Chang, Shu-Wei ;
Nair, Arun K. ;
Buehler, Markus J. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (24)
[7]   Printed graphene circuits [J].
Chen, Jian-Hao ;
Ishigami, Masa ;
Jang, Chaun ;
Hines, Daniel R. ;
Fuhrer, Michael S. ;
Williams, Ellen D. .
ADVANCED MATERIALS, 2007, 19 (21) :3623-3627
[8]   Strain Engineering of Kapitza Resistance in Few-Layer Graphene [J].
Chen, Jie ;
Walther, Jens H. ;
Koumoutsakos, Petros .
NANO LETTERS, 2014, 14 (02) :819-825
[9]   Electrically driven motion, destruction, and chirality change of polar vortices in oxide superlattices [J].
Chen, Pan ;
Tan, Congbing ;
Jiang, Zhexin ;
Gao, Peng ;
Sun, Yuanwei ;
Wang, Lifen ;
Li, Xiaomei ;
Zhu, Ruixue ;
Liao, Lei ;
Hou, Xu ;
Qu, Ke ;
Li, Ning ;
Li, Xiaomin ;
Xu, Zhi ;
Liu, Kaihui ;
Wang, Wenlong ;
Wang, Jinbin ;
Ouyang, Xiaoping ;
Zhong, Xiangli ;
Wang, Jie ;
Bai, Xuedong .
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2022, 65 (03)
[10]   Thermal Transport in Two-Dimensional Heterostructures [J].
Chen, Xue-Kun ;
Zeng, Yu-Jia ;
Chen, Ke-Qiu .
FRONTIERS IN MATERIALS, 2020, 7