Exploring parameter spaces with artificial intelligence and machine learning black-box optimization algorithms

被引:9
作者
de Souza, Fernando Abreu [1 ]
Romao, Miguel Crispim [1 ]
Castro, Nuno Filipe [1 ]
Nikjoo, Mehraveh [1 ]
Porod, Werner [2 ]
机构
[1] Univ Minho, Dept Fis, LIP Lab Instrumentacao & Fis Expt Particulas, Escola Ciencias, P-4701057 Braga, Portugal
[2] Uni Wurzburg, Inst Theoret Phys & Astrophys, Campus Hubland Nord,Emil Hilb Weg 22, D-97074 Wurzburg, Germany
关键词
SPHENO; MSSM;
D O I
10.1103/PhysRevD.107.035004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Constraining beyond the Standard Model theories usually involves scanning highly multidimensional parameter spaces and checking observable predictions against experimental bounds and theoretical constraints. Such a task is often timely and computationally expensive, especially when the model is severely constrained and thus leading to very low random sampling efficiency. In this work we tackled this challenge using artificial intelligence and machine learning search algorithms used for black-box optimization problems. Using the constrained minimal supersymmetric standard model and the phenom-enological minimal supersymmetric standard model parameter spaces, we consider both the Higgs mass and the dark matter relic density constraints to study their sampling efficiency and parameter space coverage. We find our methodology to produce orders of magnitude improvement of sampling efficiency while reasonably covering the parameter space.
引用
收藏
页数:27
相关论文
共 58 条
  • [1] Aad G., 2012, PHYS LETT B, V716, P1, DOI DOI 10.1016/J.PHYSLETB.2012.08.020
  • [2] Optuna: A Next-generation Hyperparameter Optimization Framework
    Akiba, Takuya
    Sano, Shotaro
    Yanase, Toshihiko
    Ohta, Takeru
    Koyama, Masanori
    [J]. KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 2623 - 2631
  • [3] SUSY Les Houches Accord 2
    Allanach, B. C.
    Balazs, C.
    Belanger, G.
    Bernhardt, M.
    Boudjema, F.
    Choudhury, D.
    Desch, K.
    Ellwanger, U.
    Gambino, P.
    Godbole, R.
    Goto, T.
    Guasch, J.
    Guchait, M.
    Hahn, T.
    Heinemeyer, S.
    Hugonie, C.
    Hurth, T.
    Kraml, S.
    Kreiss, S.
    Lykken, J.
    Moortgat, F.
    Moretti, S.
    Penaranda, S.
    Plehn, T.
    Porod, W.
    Pukhov, A.
    Richardson, P.
    Schumacher, M.
    Silvestrini, L.
    Skands, P.
    Slavich, P.
    Spira, M.
    Weiglein, G.
    Wienemann, P.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (01) : 8 - 25
  • [4] Allanach BC, 2004, J HIGH ENERGY PHYS
  • [5] New physics explanations of aμ in light of the FNAL muon g-2 measurement
    Athron, Peter
    Balazs, Csaba
    Jacob, Douglas H. J.
    Kotlarski, Wojciech
    Stoeckinger, Dominik
    Stoeckinger-Kim, Hyejung
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (09)
  • [6] ATLAS Collaboration, 2021, JHEP, V02, P143
  • [7] Baydin Atilim Gunes., 2020, DIFFERENTIABLE PROGR
  • [8] Belanger G, 2014, Arxiv, DOI arXiv:1402.0787
  • [9] Dark matter direct detection rate in a generic model with micrOMEGAs_2.2
    Belanger, G.
    Boudjema, F.
    Pukhov, A.
    Semenov, A.
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2009, 180 (05) : 747 - 767
  • [10] Bergstra J., 2013, INT C MACHINE LEARNI, P115, DOI DOI 10.5555/3042817.3042832