Lab on a chip for a low-carbon future

被引:27
作者
Datta, Sujit S. [1 ]
Battiato, Ilenia [2 ]
Ferno, Martin A. [3 ]
Juanes, Ruben [4 ]
Parsa, Shima [5 ]
Prigiobbe, Valentina [6 ,7 ]
Santanach-Carreras, Enric [8 ]
Song, Wen [9 ]
Biswal, Sibani Lisa [10 ]
Sinton, David [11 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Stanford Univ, Dept Energy Sci & Engn, Palo Alto, CA USA
[3] Univ Bergen, Dept Phys & Technol, N-5020 Bergen, Norway
[4] MIT, Dept Civil & Environm Engn, Cambridge, MA USA
[5] Rochester Inst Technol, Sch Phys & Astron, Rochester, NY USA
[6] Stevens Inst Technol, Dept Civil Environm & Ocean Engn, Hoboken, NJ USA
[7] Univ Padua, Dept Geosci, Padua, Italy
[8] TotalEnergies SE, Pole Etud & Rech Lacq, F-64170 Lacq, France
[9] Univ Texas Austin, Hildebrand Dept Petr & Geosyst Engn, Austin, TX USA
[10] Rice Univ, Dept Chem & Biomol Engn, Houston, TX 77005 USA
[11] Univ Toronto, Dept Mech & Ind Engn, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ON-A-CHIP; SUPERCRITICAL CO2 DISSOLUTION; PORE-SCALE FLOW; IN-WATER FOAMS; POROUS-MEDIA; MULTIPHASE FLOW; CLIMATE-CHANGE; MICROFLUIDIC APPROACH; BACTERIAL CHEMOTAXIS; MINERAL DISSOLUTION;
D O I
10.1039/d2lc00020b
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation. We hope to engage the LoC community in the many opportunities within the transition ahead, and highlight the potential of LoC approaches to the broader community of researchers, industry experts, and policy makers working toward a low-carbon future.
引用
收藏
页码:1358 / 1375
页数:18
相关论文
共 229 条
[1]   Automated microfluidic platform for studies of carbon dioxide dissolution and solubility in physical solvents [J].
Abolhasani, Milad ;
Singh, Mayank ;
Kumacheva, Eugenia ;
Guenther, Axel .
LAB ON A CHIP, 2012, 12 (09) :1611-1618
[2]   On hydrogen wettability of basaltic rock [J].
Al-Yaseri, Ahmed ;
Jha, Nilesh Kumar .
JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 200
[3]   Build your own soil: exploring microfluidics to create microbial habitat structures [J].
Aleklett, Kristin ;
Kiers, E. Toby ;
Ohlsson, Pelle ;
Shimizu, Thomas S. ;
Caldas, Victor E. A. ;
Hammer, Edith C. .
ISME JOURNAL, 2018, 12 (02) :312-319
[4]   Determination of pore-scale hydrate phase equilibria in sediments using lab-on-a-chip technology [J].
Almenningen, Stian ;
Flatlandsmo, Josef ;
Kovscek, Anthony R. ;
Ersland, Geir ;
Ferno, Martin A. .
LAB ON A CHIP, 2017, 17 (23) :4070-4076
[5]   Evaluating Rare Earth Element Availability: A Case with Revolutionary Demand from Clean Technologies [J].
Alonso, Elisa ;
Sherman, Andrew M. ;
Wallington, Timothy J. ;
Everson, Mark P. ;
Field, Frank R. ;
Roth, Richard ;
Kirchain, Randolph E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (06) :3406-3414
[6]   Microfluidic Model Porous Media: Fabrication and Applications [J].
Anbari, Alimohammad ;
Chien, Hung-Ta ;
Datta, Sujit S. ;
Deng, Wen ;
Weitz, David A. ;
Fan, Jing .
SMALL, 2018, 14 (18)
[7]  
[Anonymous], CIRCULAR EC IMPORTAN
[8]  
[Anonymous], 2020, TOTAL ENERGY OUTLOOK
[9]  
[Anonymous], CARBON DIOXIDE CAPTU
[10]  
[Anonymous], COMBINING FLUIDIC DE