Poly(ethylene glycol) alternatives in biomedical applications

被引:53
|
作者
Yao, Xikuang [1 ,2 ]
Qi, Chao [4 ]
Sun, Changrui [1 ,2 ]
Huo, Fengwei [1 ,2 ]
Jiang, Xiqun [3 ]
机构
[1] Nanjing Tech Univ, Sch Flexible Elect Future Technol, NanjingTech, Nanjing 211816, Peoples R China
[2] Nanjing Tech Univ, Inst Adv Mat IAM, NanjingTech, Nanjing 211816, Peoples R China
[3] Nanjing Univ, Coll Chem & Chem Engn, Dept Polymer Sci & Engn, Nanjing 210023, Peoples R China
[4] Chongqing Univ, Coll Bioengn, Key Lab Biorheol Sci & Technol, Minist Educ, Chongqing 400044, Peoples R China
关键词
PEG Dilemma; Hydrophilic polymers; Drug delivery systems; Biomedical applications; RING-OPENING POLYMERIZATION; BLOOD CLEARANCE PHENOMENON; HYDROPHILIC BLOCK-COPOLYMERS; ENHANCED CELLULAR UPTAKE; ONE-POT SYNTHESIS; DRUG-DELIVERY; IN-VIVO; RAFT POLYMERIZATION; POLYETHYLENE-GLYCOL; N-VINYLPYRROLIDONE;
D O I
10.1016/j.nantod.2022.101738
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Poly(ethylene glycol) (PEG) as gold standard has been extensively conjugated to diagnostic and therapeutic agents or decorated on the surface of nanoplatforms, which is known as PEGylation. After the PEGylation, these formations are expected to achieve superior diagnostic and therapeutic effects. However, in-depth studies indicate that PEG abuse can also cause severe side effects, such as the production of anti-PEG antibodies, hypersensitivity reactions and accelerated blood clearance (ABC) phenomenon, which may generate toxic species and greatly compromise their therapeutic efficacy. In this review, after the introduction of PEG's pros and cons, categories and characteristics of PEG alternatives including poly(N-vi-nylpyrrolidone), polyacrylamides, polybetaines, poly(2-oxazoline)s, polyesters and polysarcosine are presented, followed by discussion about the synthesis and characterization of these PEG alternatives. Afterwards, updated biomedical applications of these PEG alternatives are illustrated from the following subsections, i.e., PEG alternative-agent conjugates, PEG alternative-tethered nanocarriers for imaging and drug delivery, PEG alternative-modified hydrogels and PEG alternatives for antifouling surface coating. In the end, conclusions and future perspectives of PEG alternatives are given. It is envisioned that these PEG alternatives can bring a great opportunity to construct efficient nanoplatforms for precise nanomedicine.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [41] Applications of Poly(Ethylene)Glycol (PEG) in Separation Science
    Mansour, Fotouh R.
    Zhou, Ling
    Danielson, Neil D.
    CHROMATOGRAPHIA, 2015, 78 (23-24) : 1427 - 1442
  • [42] Preparation of nanoparticle of methoxy poly(ethylene glycol)/poly(ε-caprolactone)/methoxy poly(ethylene glycol) triblock copolymer for drug delivery applications
    Cuong, N. V.
    Chen, C. H.
    Chen, Y. T.
    Hsieh, M. F.
    APCMBE 2008: 7TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, 2008, 19 : 190 - 193
  • [43] Synthesis and Characterization of Folate-decorated Cobalt Ferrite Nanoparticles Coated with Poly(Ethylene Glycol) for Biomedical Applications
    Nasiri, Mahtab
    Hassanzadeh-Tabrizi, Sayed Ali
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2018, 65 (02) : 231 - 242
  • [44] FUNCTIONALIZATION OF POLY(ETHYLENE GLYCOL) AND MONOMETHOXY-POLY(ETHYLENE GLYCOL)
    BUCKMANN, AF
    MORR, M
    JOHANSSON, G
    MAKROMOLEKULARE CHEMIE-MACROMOLECULAR CHEMISTRY AND PHYSICS, 1981, 182 (05): : 1379 - 1384
  • [45] Poly(ethylene glycol) in Drug Delivery: Pros and Cons as Well as Potential Alternatives
    Knop, Katrin
    Hoogenboom, Richard
    Fischer, Dagmar
    Schubert, Ulrich S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2010, 49 (36) : 6288 - 6308
  • [46] 3D Printability Assessment of Poly(octamethylene maleate (anhydride) citrate) and Poly(ethylene glycol) Diacrylate Copolymers for Biomedical Applications
    Wales, Dominic J.
    Keshavarz, Meysam
    Howe, Carmel
    Yeatman, Eric
    ACS APPLIED POLYMER MATERIALS, 2022, 4 (08) : 5457 - 5470
  • [47] Improved processability and performance of biomedical devices with poly(lactic acid)/poly(ethylene glycol) blends
    Zhang, Jianming
    Wang, Shiwei
    Zhao, Dongzhe
    Zhang, Yankun
    Pang, Wenbo
    Zhang, Binbin
    Li, Qian
    JOURNAL OF APPLIED POLYMER SCIENCE, 2017, 134 (33)
  • [48] Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application
    Della Sala, Francesca
    Biondi, Marco
    Guarnieri, Daniela
    Borzacchiello, Assunta
    Ambrosio, Luigi
    Mayol, Laura
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2020, 110 (110)
  • [49] Synthesis of monomethoxy poly(ethylene glycol) without diol poly(ethylene glycol)
    Zhang, Jing
    Zhao, Yong-Jiang
    Su, Zhi-Guo
    Ma, Guang-Hui
    JOURNAL OF APPLIED POLYMER SCIENCE, 2007, 105 (06) : 3782 - 3786
  • [50] Oligonucleotide poly(ethylene glycol) conjugates: Synthesis, properties, and applications
    Jaschke, A
    POLY(ETHYLENE GLYCOL): CHEMISTRY AND BIOLOGICAL APPLICATIONS, 1997, 680 : 265 - 283