Forecasting Flash Floods with Optimized Adaptive Neuro-Fuzzy Inference System and Internet of Things

被引:0
|
作者
Rani, M. Pushpa [1 ]
Aremu, Bashiru [2 ]
Fernando, Xavier [3 ]
机构
[1] Mother Teresa Womens Univ, Dept Comp Sci, Kodaikanal, India
[2] Crown Univ, Intl Chatered Inc, Americas, Ghana
[3] Ryerson Univ, Ryerson Commun Lab, Toronto, ON, Canada
来源
PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022 | 2023年 / 475卷
关键词
Early flood forecasting; IoT; Adaptive neuro-fuzzy inference system; Fire fly algorithm; Disaster management;
D O I
10.1007/978-981-19-2840-6_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few decades, global warming and climate change have resulted in unpredictable floods in many regions of the world, which has the potential to cause a wide range of catastrophes. The primary objective of this work is to design a system for early flood prediction using soft computing and the Internet of Things (IoT). Predicting heavy rainfall with extreme precision is critical for saving people from flooding and minimizing property damage. There are numerous methods for predicting rainfall available today, but all of them are worthless due to drastic climate change. This study proposes an hybridized adaptive neuro-fuzzy inference system to reduce the mistakes in rainfall forecasts caused by climate change. ANFIS has been hybridized by fire fly algorithm. Weather big data was collected from the Chennai metrological region from 2010 to 2020 and analyzed using an upgraded adaptive neuro-fuzzy inference system. Additionally, IoT technology is being used to automate flood alarms and monitor flood parameters regularly. Finally, the proposed method is implemented experimentally to demonstrate the proposed early flood prediction model's accuracy.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [31] Organizational Risk Assessment using Adaptive Neuro-Fuzzy Inference System
    Jassbi, J.
    Khanmohammadi, S.
    PROCEEDINGS OF THE JOINT 2009 INTERNATIONAL FUZZY SYSTEMS ASSOCIATION WORLD CONGRESS AND 2009 EUROPEAN SOCIETY OF FUZZY LOGIC AND TECHNOLOGY CONFERENCE, 2009, : 1217 - 1222
  • [32] Comparative evaluation of adaptive fuzzy inference system and adaptive neuro-fuzzy inference system for mandatory lane changing decisions on freeways
    Vechione, Matthew
    Cheu, Ruey Long
    JOURNAL OF INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 26 (06) : 746 - 760
  • [33] Application of Adaptive Neuro-Fuzzy Inference System for Diabetes Classification and Prediction
    Geman, Oana
    Chiuchisan, Iuliana
    Toderean , Roxana
    2017 IEEE INTERNATIONAL CONFERENCE ON E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2017, : 639 - 642
  • [34] An evolutionary-based adaptive neuro-fuzzy inference system for intelligent short-term load forecasting
    Kazemi, S. M. R.
    Hoseini, Mir Meisam Seied
    Abbasian-Naghneh, S.
    Rahmati, Seyed Habib A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2014, 21 (02) : 311 - 326
  • [35] Short-term building electrical load forecasting using adaptive neuro-fuzzy inference system (ANFIS)
    Ghenai, Chaouki
    Al-Mufti, Omar Ahmed Abduljabbar
    Al-Isawi, Omar Adil Mashkoor
    Amirah, Lutfi Hatem Lutfi
    Merabet, Adel
    JOURNAL OF BUILDING ENGINEERING, 2022, 52
  • [36] A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting
    Kampouropoulos, Konstantinos
    Andrade, Fabio
    Garcia, Antoni
    Romeral, Luis
    ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, 2014, 14 (01) : 9 - 14
  • [37] Application of adaptive neuro-fuzzy inference system for prediction of minimum miscibility pressure
    Shahrabi, Mohammadjavad Ameri
    Kivi, Iman Rahimzadeh
    Akbari, Mohammadreza
    Safiabadi, Anoush
    INTERNATIONAL JOURNAL OF OIL GAS AND COAL TECHNOLOGY, 2014, 7 (01) : 68 - 84
  • [38] Synthesized pansharpening using curvelet transform and adaptive neuro-fuzzy inference system
    Devulapalli, Sudheer
    Krishnan, Rajakumar
    JOURNAL OF APPLIED REMOTE SENSING, 2019, 13 (03)
  • [39] Genetic tracker with adaptive neuro-fuzzy inference system for multiple target tracking
    Turkmen, I.
    Guney, K.
    EXPERT SYSTEMS WITH APPLICATIONS, 2008, 35 (04) : 1657 - 1667
  • [40] Differentiating adaptive Neuro-Fuzzy Inference System for accurate function derivative approximation
    Khayat, Omid
    Nejad, Hadi Chahkandi
    Rahatabad, Fereidoon Nowshiravan
    Abadi, Mahdi Mohammad
    NEUROCOMPUTING, 2013, 103 : 232 - 238