Forecasting Flash Floods with Optimized Adaptive Neuro-Fuzzy Inference System and Internet of Things

被引:0
|
作者
Rani, M. Pushpa [1 ]
Aremu, Bashiru [2 ]
Fernando, Xavier [3 ]
机构
[1] Mother Teresa Womens Univ, Dept Comp Sci, Kodaikanal, India
[2] Crown Univ, Intl Chatered Inc, Americas, Ghana
[3] Ryerson Univ, Ryerson Commun Lab, Toronto, ON, Canada
来源
PERVASIVE COMPUTING AND SOCIAL NETWORKING, ICPCSN 2022 | 2023年 / 475卷
关键词
Early flood forecasting; IoT; Adaptive neuro-fuzzy inference system; Fire fly algorithm; Disaster management;
D O I
10.1007/978-981-19-2840-6_3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Over the past few decades, global warming and climate change have resulted in unpredictable floods in many regions of the world, which has the potential to cause a wide range of catastrophes. The primary objective of this work is to design a system for early flood prediction using soft computing and the Internet of Things (IoT). Predicting heavy rainfall with extreme precision is critical for saving people from flooding and minimizing property damage. There are numerous methods for predicting rainfall available today, but all of them are worthless due to drastic climate change. This study proposes an hybridized adaptive neuro-fuzzy inference system to reduce the mistakes in rainfall forecasts caused by climate change. ANFIS has been hybridized by fire fly algorithm. Weather big data was collected from the Chennai metrological region from 2010 to 2020 and analyzed using an upgraded adaptive neuro-fuzzy inference system. Additionally, IoT technology is being used to automate flood alarms and monitor flood parameters regularly. Finally, the proposed method is implemented experimentally to demonstrate the proposed early flood prediction model's accuracy.
引用
收藏
页码:23 / 38
页数:16
相关论文
共 50 条
  • [1] An optimized adaptive neuro-fuzzy inference system to estimate software development effort
    Moosavi, Seyyed Hamid Samareh
    Bardsiri, Vahid Khatibi
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2017, 32 (05): : 369 - 382
  • [2] Improved adaptive neuro-fuzzy inference system
    Benmiloud, Tarek
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (03) : 575 - 582
  • [3] Improved adaptive neuro-fuzzy inference system
    Tarek Benmiloud
    Neural Computing and Applications, 2012, 21 : 575 - 582
  • [4] Adaptive Neuro-Fuzzy Inference System for Drought Forecasting in the Cai River Basin in Vietnam
    Luong Bang Nguyen
    Li, Qiong Fang
    Trieu Anh Ngoc
    Hiramatsu, Kazuaki
    JOURNAL OF THE FACULTY OF AGRICULTURE KYUSHU UNIVERSITY, 2015, 60 (02): : 405 - 415
  • [5] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [6] An expert system of price forecasting for used cars using adaptive neuro-fuzzy inference
    Wu, Jian-Da
    Hsu, Chuang-Chin
    Chen, Hui-Chu
    EXPERT SYSTEMS WITH APPLICATIONS, 2009, 36 (04) : 7809 - 7817
  • [7] Fuzzy nonparametric regression based on an adaptive neuro-fuzzy inference system
    Danesh, Sedigheh
    Farnoosh, Rahman
    Razzaghnia, Tahereh
    NEUROCOMPUTING, 2016, 173 : 1450 - 1460
  • [8] Comparative Study of Grammatical Evolution and Adaptive Neuro-Fuzzy Inference System on Rainfall Forecasting in Bandung
    Nhita, Fhira
    Adiwijaya
    Annisa, Sheila
    Kinasih, Sekar
    2015 3rd International Conference on Information and Communication Technology (ICoICT), 2015, : 6 - 10
  • [9] Geoacoustic inversion using adaptive neuro-fuzzy inference system
    Satyanarayana Yegireddi
    Arvind Kumar
    Computational Geosciences, 2008, 12 : 513 - 523
  • [10] Image Interpolation Based on Adaptive Neuro-Fuzzy Inference System
    Maleki, Shiva Aghapour
    Tinati, Mohammad Ali
    Tazehkand, Behzad Mozaffari
    2019 3RD INTERNATIONAL CONFERENCE ON IMAGING, SIGNAL PROCESSING AND COMMUNICATION (ICISPC), 2019, : 78 - 84