A Review of Applications of the Bayes Factor in Psychological Research

被引:43
作者
Heck, Daniel W. [1 ]
Boehm, Udo [2 ]
Boing-Messing, Florian [3 ,4 ]
Burkner, Paul-Christian [5 ]
Derks, Koen [6 ]
Dienes, Zoltan [7 ]
Fu, Qianrao [8 ]
Gu, Xin [9 ]
Karimova, Diana [10 ]
Kiers, Henk A. L. [11 ]
Klugkist, Irene [8 ]
Kuiper, Rebecca M. [8 ]
Lee, Michael D. [12 ]
Leenders, Roger [10 ]
Leplaa, Hidde J. [8 ]
Linde, Maximilian [11 ]
Ly, Alexander [2 ,13 ]
Meijerink-Bosman, Marlyne [10 ]
Moerbeek, Mirjam [8 ]
Mulder, Joris [10 ]
Palfi, Bence [7 ]
Schoenbrodt, Felix D. [14 ]
Tendeiro, Jorge N. [11 ,15 ]
van den Bergh, Don [2 ]
Van Lissa, Caspar J. [8 ]
van Ravenzwaaij, Don [11 ]
Vanpaemel, Wolf [16 ]
Wagenmakers, Eric-Jan [2 ]
Williams, Donald R. [17 ]
Zondervan-Zwijnenburg, Marielle [8 ]
Hoijtink, Herbert [8 ]
机构
[1] Univ Marburg, Dept Psychol, Gutenbergstr 18, D-35032 Marburg, Germany
[2] Univ Amsterdam, Dept Psychol, Amsterdam, Netherlands
[3] Jheronimus Acad Data Sci, Shertogenbosch, Netherlands
[4] Tilburg Univ, Dept Methodol & Stat, Tilburg, Netherlands
[5] Univ Stuttgart, Cluster Excellence Simulat Technol, Stuttgart, Germany
[6] Nyenrode Business Univ, Ctr Accounting Auditing & Control, Breukelen, Netherlands
[7] Univ Sussex, Sch Psychol, Brighton, E Sussex, England
[8] Univ Utrecht, Dept Methodol & Stat, POB 80140, NL-3508 TC Utrecht, Netherlands
[9] East China Normal Univ, Dept Educ Psychol, Shanghai, Peoples R China
[10] Tilburg Univ, Dept Methodol, Tilburg, Netherlands
[11] Univ Groningen, Dept Psychol, Groningen, Netherlands
[12] Univ Calif Irvine, Dept Cognit Sci, Irvine, CA 92717 USA
[13] CWI Amsterdam, Machine Learning Grp, Amsterdam, Netherlands
[14] Ludwig Maximilians Univ Munchen, Dept Psychol, Munich, Germany
[15] Hiroshima Univ, Res Ctr Artificial Intelligence & Data Innovat, Hiroshima, Japan
[16] Katholieke Univ Leuven, Fac Psychol & Educ Sci, Leuven, Belgium
[17] Univ Calif Davis, Dept Psychol, Davis, CA 95616 USA
关键词
Bayes factor; evidence; hypothesis testing; model selection; theory evaluation; PROCESSING TREE MODELS; R PACKAGE; G-PRIORS; HYPOTHESES; DISSOCIATION; INEQUALITY; SELECTION; TESTS; NONINFERIORITY; SENSITIVITY;
D O I
10.1037/met0000454
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: Bayesian evaluation of point null, interval, and informative hypotheses, Bayesian evidence synthesis, Bayesian variable selection and model averaging, and Bayesian evaluation of cognitive models. We elaborate what each application entails, give illustrative examples, and provide an overview of key references and software with links to other applications. The article is concluded with a discussion of the opportunities and pitfalls of Bayes factor applications and a sketch of corresponding future research lines. Translational Abstract The last 25 years have shown a steady increase in attention for the Bayes factor as a tool for hypothesis evaluation and model selection. The Bayes factor provides a method for quantifying the relative evidence for two competing hypotheses that are both instantiated by specific statistical models with prior distributions on the parameters. This general approach can be used to address many specific, theoretically relevant research questions. The present review highlights the potential of the Bayes factor in psychological research. We discuss six types of applications: whether a randomized experiment has an effect or not (point null hypothesis), whether an effect is inside or outside a range of negligible effect sizes (interval hypothesis), whether a set of means follows a specific order (informative hypothesis), whether a set of studies jointly corroborate a theoretical claim (evidence synthesis), which variables are most relevant for prediction (variable selection), and which model provides the best account of latent processes (cognitive modeling). We elaborate what each application entails, give illustrative examples with reproducible files for the software R and JASP, and provide an overview of key references and software with links to other applications. We concluded with a discussion of the opportunities and pitfalls of the Bayes factor.
引用
收藏
页码:558 / 579
页数:22
相关论文
共 113 条
[1]   Estimating the reproducibility of psychological science [J].
Aarts, Alexander A. ;
Anderson, Joanna E. ;
Anderson, Christopher J. ;
Attridge, Peter R. ;
Attwood, Angela ;
Axt, Jordan ;
Babel, Molly ;
Bahnik, Stepan ;
Baranski, Erica ;
Barnett-Cowan, Michael ;
Bartmess, Elizabeth ;
Beer, Jennifer ;
Bell, Raoul ;
Bentley, Heather ;
Beyan, Leah ;
Binion, Grace ;
Borsboom, Denny ;
Bosch, Annick ;
Bosco, Frank A. ;
Bowman, Sara D. ;
Brandt, Mark J. ;
Braswell, Erin ;
Brohmer, Hilmar ;
Brown, Benjamin T. ;
Brown, Kristina ;
Bruening, Jovita ;
Calhoun-Sauls, Ann ;
Callahan, Shannon P. ;
Chagnon, Elizabeth ;
Chandler, Jesse ;
Chartier, Christopher R. ;
Cheung, Felix ;
Christopherson, Cody D. ;
Cillessen, Linda ;
Clay, Russ ;
Cleary, Hayley ;
Cloud, Mark D. ;
Cohn, Michael ;
Cohoon, Johanna ;
Columbus, Simon ;
Cordes, Andreas ;
Costantini, Giulio ;
Alvarez, Leslie D. Cramblet ;
Cremata, Ed ;
Crusius, Jan ;
DeCoster, Jamie ;
DeGaetano, Michelle A. ;
Della Penna, Nicolas ;
den Bezemer, Bobby ;
Deserno, Marie K. .
SCIENCE, 2015, 349 (6251)
[2]   Randomised controlled non-inferiority trial with 3-year follow-up of internet-delivered versus face-to-face group cognitive behavioural therapy for depression [J].
Andersson, Gerhard ;
Hesser, Hugo ;
Veilord, Andrea ;
Svedling, Linn ;
Andersson, Fredrik ;
Sleman, Owe ;
Mauritzson, Lena ;
Sarkohi, Ali ;
Claesson, Elisabet ;
Zetterqvist, Vendela ;
Lamminen, Mailen ;
Eriksson, Thomas ;
Carlbring, Per .
JOURNAL OF AFFECTIVE DISORDERS, 2013, 151 (03) :986-994
[3]   Multinomial processing tree models and psychological assessment [J].
Batchelder, WH .
PSYCHOLOGICAL ASSESSMENT, 1998, 10 (04) :331-344
[4]   Theoretical and empirical review of multinomial process tree modeling [J].
Batchelder, WH ;
Riefer, DM .
PSYCHONOMIC BULLETIN & REVIEW, 1999, 6 (01) :57-86
[5]   CRITERIA FOR BAYESIAN MODEL CHOICE WITH APPLICATION TO VARIABLE SELECTION [J].
Bayarri, M. J. ;
Berger, J. O. ;
Forte, A. ;
Garcia-Donato, G. .
ANNALS OF STATISTICS, 2012, 40 (03) :1550-1577
[6]   Feeling the Future: Experimental Evidence for Anomalous Retroactive Influences on Cognition and Affect [J].
Bem, Daryl J. .
JOURNAL OF PERSONALITY AND SOCIAL PSYCHOLOGY, 2011, 100 (03) :407-425
[7]  
Berger J., 1988, LIKELIHOOD PRINCIPLE
[8]   Multinomial process tree models of control and automaticity in weapon misidentification [J].
Bishara, Anthony J. ;
Payne, B. Keith .
JOURNAL OF EXPERIMENTAL SOCIAL PSYCHOLOGY, 2009, 45 (03) :524-534
[9]   Using Bayesian regression to test hypotheses about relationships between parameters and covariates in cognitive models [J].
Boehm, Udo ;
Steingroever, Helen ;
Wagenmakers, Eric-Jan .
BEHAVIOR RESEARCH METHODS, 2018, 50 (03) :1248-1269
[10]   Parameter validation in hierarchical MPT models by functional dissociation with continuous covariates: An application to contingency inference [J].
Bott, Franziska M. ;
Heck, Daniel W. ;
Meiser, Thorsten .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2020, 98