Relaxed Larangian duality in convex infinite optimization: reducibility and strong duality

被引:3
|
作者
Dinh, N. [1 ]
Goberna, M. A. [2 ]
Lopez-Cerda, M. A. [2 ,3 ]
Volle, M. [4 ]
机构
[1] Vietnam Natl Univ HCMC, Dept Math, Ho Chi Minh City, Vietnam
[2] Univ Alicante, Dept Math, Alicante, Spain
[3] Federation Univ, CIAO, Ballarat, Vic, Australia
[4] Avignon Univ, Lab Math Avignon, EA 2151, Avignon, France
关键词
Convex infinite programming; Lagrangian duality; Haar duality; reducibility; CONSTRAINT QUALIFICATIONS; PROGRAMS;
D O I
10.1080/02331934.2022.2031192
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We associate with each convex optimization problem, posed on some locally convex space, with infinitely many constraints indexed by the set T, and a given non-empty family H of finite subsets of T, a suitable Lagrangian-Haar dual problem. We obtain necessary and sufficient conditions for H-reducibility, that is, equivalence to some subproblem obtained by replacing the whole index set T by some element of H. Special attention is addressed to linear optimization, infinite and semi-infinite, and to convex problems with a countable family of constraints. Results on zero H-duality gap and on H-(stable) strong duality are provided. Examples are given along the paper to illustrate the meaning of the results.
引用
收藏
页码:189 / 214
页数:26
相关论文
共 50 条
  • [1] RELAXED LAGRANGIAN DUALITY IN CONVEX INFINITE OPTIMIZATION: REVERSE STRONG DUALITY AND OPTIMALITY
    Dinh N.
    Goberna M.A.
    López M.A.
    Volle M.
    Journal of Applied and Numerical Optimization, 2022, 4 (01): : 3 - 18
  • [2] New glimpses on convex infinite optimization duality
    M. A. Goberna
    M. A. López
    M. Volle
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2015, 109 : 431 - 450
  • [3] New glimpses on convex infinite optimization duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2015, 109 (02) : 431 - 450
  • [4] Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 : 2501 - 2510
  • [5] Primal Attainment in Convex Infinite Optimization Duality
    Goberna, M. A.
    Lopez, M. A.
    Volle, M.
    JOURNAL OF CONVEX ANALYSIS, 2014, 21 (04) : 1043 - 1064
  • [6] Duality for convex infinite optimization on linear spaces
    Goberna, M. A.
    Volle, M.
    OPTIMIZATION LETTERS, 2022, 16 (08) : 2501 - 2510
  • [7] Strong duality for generalized convex optimization problems
    Bot, RI
    Kassay, G
    Wanka, G
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 127 (01) : 45 - 70
  • [8] Strong Duality for Generalized Convex Optimization Problems
    R. I. Boţ
    G. Kassay
    G. Wanka
    Journal of Optimization Theory and Applications, 2005, 127 : 45 - 70
  • [9] A Unifying Approach to Robust Convex Infinite Optimization Duality
    Nguyen Dinh
    Miguel Angel Goberna
    Marco Antonio López
    Michel Volle
    Journal of Optimization Theory and Applications, 2017, 174 : 650 - 685
  • [10] Correction to: Duality for convex infinite optimization on linear spaces
    M. A. Goberna
    M. Volle
    Optimization Letters, 2022, 16 (8) : 2511 - 2511