Diophantine approximation with smooth numbers

被引:0
作者
Baker, Roger [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Exponential sums; Smooth numbers; Distribution modulo one;
D O I
10.1007/s11139-020-00361-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let theta be an irrational number and phi a real number. Let C > 2 and epsilon > 0. There are infinitely many positive integers n free of prime factors > (log n)(C), such that parallel to theta n + phi parallel to < n(-(1/3 - 2/3C)+epsilon). Here parallel to y parallel to is the distance from y to Z.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [31] Multivariate Diophantine equations with many solutions
    Evertse, JH
    Moree, P
    Stewart, CL
    Tijdeman, R
    ACTA ARITHMETICA, 2003, 107 (02) : 103 - 125
  • [32] On two Diophantine inequalities over primes
    Zhang, Min
    Li, Jinjiang
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2018, 29 (05): : 1393 - 1410
  • [33] A Diophantine inequality with four prime variables
    Zhang, Min
    Li, Jinjiang
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2019, 15 (09) : 1759 - 1770
  • [34] A ternary Diophantine inequality over primes
    Baker, Roger
    Weingartner, Andreas
    ACTA ARITHMETICA, 2014, 162 (02) : 159 - 196
  • [35] A Diophantine equation involving one Linnik prime
    Liu, Yuhui
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2024, : 655 - 668
  • [36] Additive problems with smooth integers
    Ki, H.
    Maier, H.
    Sankaranarayanan, A.
    ACTA ARITHMETICA, 2016, 175 (04) : 301 - 319
  • [37] LOCAL PROPERTIES OF NUMBERS OF FIRST NUMBERS
    Martin, Bruno
    Mauduit, Christian
    Rivat, Joel
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2019, 18 (01) : 189 - 224
  • [38] Diophantine inequalities over Piatetski-Shapiro primes
    Huang, Jing
    Zhai, Wenguang
    Zhang, Deyu
    FRONTIERS OF MATHEMATICS IN CHINA, 2021, 16 (03) : 749 - 770
  • [39] Diophantine inequalities over Piatetski-Shapiro primes
    Jing Huang
    Wenguang Zhai
    Deyu Zhang
    Frontiers of Mathematics in China, 2021, 16 : 749 - 770
  • [40] Numbers in a given set with (or without) a large prime factor
    Baker, Roger
    RAMANUJAN JOURNAL, 2009, 20 (03) : 275 - 295