Diophantine approximation with smooth numbers

被引:0
|
作者
Baker, Roger [1 ]
机构
[1] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
Exponential sums; Smooth numbers; Distribution modulo one;
D O I
10.1007/s11139-020-00361-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let theta be an irrational number and phi a real number. Let C > 2 and epsilon > 0. There are infinitely many positive integers n free of prime factors > (log n)(C), such that parallel to theta n + phi parallel to < n(-(1/3 - 2/3C)+epsilon). Here parallel to y parallel to is the distance from y to Z.
引用
收藏
页码:49 / 54
页数:6
相关论文
共 50 条
  • [1] Diophantine approximation with smooth numbers
    Roger Baker
    The Ramanujan Journal, 2023, 61 : 49 - 54
  • [2] Inhomogeneous diophantine approximation with prime constraints
    Stephan Baier
    Anish Ghosh
    Proceedings - Mathematical Sciences, 2018, 128
  • [3] Inhomogeneous diophantine approximation with prime constraints
    Baier, Stephan
    Ghosh, Anish
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2018, 128 (04):
  • [4] A DIOPHANTINE EQUATION INVOLVING SPECIAL PRIME NUMBERS
    Dimitrov, Stoyan
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2023, 73 (01) : 151 - 176
  • [5] Somewhat smooth numbers in short intervals
    Weingartner, Andreas
    RAMANUJAN JOURNAL, 2023, 60 (02) : 447 - 453
  • [6] Diophantine approximation with prime restriction in function fields
    Baier, Stephan
    Molla, Esrafil Ali
    Ganguly, Arijit
    JOURNAL OF NUMBER THEORY, 2022, 241 : 57 - 90
  • [7] Diophantine approximation over Piatetski-Shapiro primes
    Li, Taiyu
    Liu, Huafeng
    JOURNAL OF NUMBER THEORY, 2020, 211 : 184 - 198
  • [8] Sums and products with smooth numbers
    Banks, William D.
    Covert, David J.
    JOURNAL OF NUMBER THEORY, 2011, 131 (06) : 985 - 993
  • [9] Smooth numbers in short intervals
    Croot, Ernie
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2007, 3 (01) : 159 - 169
  • [10] Diophantine approximation with prime restriction in real quadratic number fields
    Stephan Baier
    Dwaipayan Mazumder
    Mathematische Zeitschrift, 2021, 299 : 699 - 750