Discrete Morse Sandwich: Fast Computation of Persistence Diagrams for Scalar Data - An Algorithm and a Benchmark

被引:8
作者
Guillou, Pierre [1 ,2 ]
Vidal, Jules [1 ,2 ]
Tierny, Julien [1 ,2 ]
机构
[1] CNRS, F-75005 Paris, France
[2] Sorbonne Univ, F-75005 Paris, France
关键词
discrete Morse theory; persistence diagrams; scalar data; Topological data analysis; TOPOLOGICAL SIMPLIFICATION; EFFICIENT COMPUTATION; COMPLEXES;
D O I
10.1109/TVCG.2023.3238008
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper introduces an efficient algorithm for persistence diagram computation, given an input piecewise linear scalar field f defined on a d-dimensional simplicial complex K, with d <= 3. Our work revisits the seminal algorithm "PairSimplices" (Edelsbrunner et al. 2002), (Zomorodian, 2010) with discrete Morse theory (DMT) (Forman, 1998), (Robins et al. 2011), which greatly reduces the number of input simplices to consider. Further, we also extend to DMT and accelerate the stratification strategy described in "PairSimplices" (Edelsbrunner et al. 2002), (Zomorodian, 2010) for the fast computation of the 0th and (d - 1)th diagrams, noted D-0(f) and Dd-1(f ). Minima-saddle persistence pairs (D-0(f )) and saddle-maximum persistence pairs (Dd-1(f )) are efficiently computed by processing, with a Union-Find, the unstable sets of 1-saddles and the stable sets of (d - 1)-saddles. This fast precomputation for the dimensions 0 and (d - 1) enables an aggressive specialization of (Bauer et al. 2014) to the 3D case, which results in a drastic reduction of the number of input simplices for the computation of D-1(f ), the intermediate layer of the sandwich. Finally, we document several performance improvements via shared-memory parallelism. We provide an open-source implementation of our algorithm for reproducibility purposes. Extensive experiments indicate that our algorithm improves by two orders of magnitude the time performance of the seminal "PairSimplices" algorithm it extends. Moreover, it also improves memory footprint and time performance over a selection of 14 competing approaches, with a substantial gain over the fastest available approaches, while producing a strictly identical output.
引用
收藏
页码:1897 / 1915
页数:19
相关论文
共 103 条
[1]  
Adams Henry, 2014, Mathematical Software - ICMS 2014. 4th International Congress. Proceedings. LNCS: 8592, P129, DOI 10.1007/978-3-662-44199-2_23
[2]  
Atallah M. J., 2010, Algorithms and Theory of Computation Handbook, V2nd, P82, DOI [DOI 10.1017/CBO97805115469451,2, 10.1017/CBO97805115469451,2]
[3]   CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRAL SURFACES [J].
BANCHOFF, TF .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (05) :475-&
[4]  
Barannikov S.A., 1994, ADV SOVIET MATH, V21, P93, DOI DOI 10.1090/ADVSOV/021/03
[5]  
Bauer U., 2014, P TOP METH DAT AN VI, P103
[6]  
Bauer U., 2014, P ALENEX, P31, DOI [DOI 10.1137/1.9781611973198.43, 10.1137/1.9781611973198.4, DOI 10.1137/1.9781611973198.4]
[7]  
Bauer U, 2019, RIPSER EFFICIENT COM, DOI DOI 10.1186/s13059-016-0980-6
[8]   PHAT - Persistent Homology Algorithms Toolbox [J].
Bauer, Ulrich ;
Kerber, Michael ;
Reininghaus, Jan ;
Wagner, Hubert .
JOURNAL OF SYMBOLIC COMPUTATION, 2017, 78 :76-90
[9]   TopoMS: Comprehensive topological exploration for molecular and condensed-matter systems [J].
Bhatia, Harsh ;
Gyulassy, Attila G. ;
Lordi, Vincenzo ;
Pask, John E. ;
Pascucci, Valerio ;
Bremer, Peer-Timo .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (16) :936-952
[10]   Reeb graphs for shape analysis and applications [J].
Biasotti, S. ;
Giorgi, D. ;
Spagnuolo, M. ;
Falcidieno, B. .
THEORETICAL COMPUTER SCIENCE, 2008, 392 (1-3) :5-22