Rare earth metals ion intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries

被引:12
|
作者
Hu, Bingbing [1 ]
Yang, Xinyao [1 ]
Li, Dongshan [1 ]
Jiang, Jiayu [1 ]
Liu, Chenglin [1 ]
Deng, Yu [1 ]
Pu, Hong [2 ]
Ma, Guangqiang [2 ]
Li, Zhi [1 ,3 ]
机构
[1] Chongqing Jiaotong Univ, China Spain Collaborat Res Ctr Adv Mat, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
[2] Panzhihua Univ, Sichuan Vanadium Titanium Mat Engn Technol Res Ctr, Panzhihua 617000, Sichuan, Peoples R China
[3] Chongqing Jiaotong Univ, Sch Mat Sci & Engn, Chongqing 400074, Peoples R China
关键词
Rare earth metal ions; Intercalation; Vanadium oxides; Electrochemical properties; Aqueous zinc-ion battery; CHALLENGES; DESIGN; ANODE;
D O I
10.1016/j.ceramint.2023.12.177
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrated vanadium oxide (V2O5 & sdot;nH2O) is promising cathode candidates for aqueous rechargeable Zn-ion batteries (ZIBs) owing to its high theoretical specific capacity, abundant resources and environmentally friendly. However, the higher charge density of Zn2+ lead to its structural instability, cyclic degradation and sluggish Zn2+ diffusion kinetics. Herein, rare earth metal ions intercalated into the interlayer of V2O5 & sdot;nH2O materials (abbreviated as RE-VOH) are successfully synthesized to expand interlayer spacing and stabilize the layered structure via a simple sol-gel method, among, the yttrium ion intercalated V2O5 & sdot;nH2O (Y-VOH) exhibits a honeycomb porous microstructure and a remarkably enlarged interlayer distance (13.6 angstrom), which can not only increase the contact area between the electrode material and the electrolyte but also offer rapid diffusion channel for Zn2+. Meanwhile, the problem of vanadium dissolution of cathode materials is inhibited by the electrolyte additive strategy through adding suitable vanadium oxide sol to aqueous electrolyte, furthermore, the zinc anode modification strategy in electroplating process inhibits the formation of zinc dendrites. Benefitting from the synergistic effect of modification design for the ZIBs systems of cathode, electrolyte and anode, the overall electrochemical performance of Y-VOH electrode is significantly improved, delivering a large specific capacity of 337 mAh g-1 at the current density of 500 mA g-1 and excellent rate capability of 170 mAh g-1 at 10 A g-1, along with an outstanding capacity retention of 90 % over 3000 cycles. Additionally, systematical ex situ characterizations prove the (de)intercalation reversibility of Zn2+ storage mechanism for the Y-VOH cathode. This research may provide a new way for exploiting high performance vanadium-based materials for aqueous ZIBs.
引用
收藏
页码:8421 / 8428
页数:8
相关论文
共 50 条
  • [1] Bimetallic ions pre-intercalated hydrated vanadium oxides for high-performance aqueous zinc-ion batteries
    Hu, Bingbing
    Yang, Xinyao
    Li, Dongshan
    Luo, Liang
    Jiang, Jiayu
    Du, Tianlun
    Pu, Hong
    Ma, Guangqiang
    Xiang, Bin
    Li, Zhi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 1008
  • [2] Carbon-coated hydrated vanadium dioxide for high-performance aqueous zinc-ion batteries
    Luo, Zexiang
    Zeng, Jing
    Liu, Zhen
    He, Hanbing
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 906
  • [3] Mg2+ pre-intercalated hydrated vanadium oxide as high-performance cathode for aqueous zinc-ion batteries
    Du, Yehong
    Zhang, Yan
    Wang, Xinyu
    Sun, Juncai
    MODERN PHYSICS LETTERS B, 2022, 36 (17):
  • [4] Expanded hydrated vanadate for high-performance aqueous zinc-ion batteries
    Liu, Chaofeng
    Neale, Zachary
    Zheng, Jiqi
    Jia, Xiaoxiao
    Huang, Juanjuan
    Yan, Mengyu
    Tian, Meng
    Wang, Mingshan
    Yang, Jihui
    Cao, Guozhong
    ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (07) : 2273 - 2285
  • [5] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    Journal of Power Sources, 2024, 595
  • [6] Zinc ion modulation of hydrated vanadium pentoxide for high-performance aqueous zinc ion batteries
    Wu, Jiadong
    Yang, Linyu
    Wang, Shuying
    Yao, Xiaolong
    Wang, Jun
    Abliz, Ablat
    Xie, Xuefang
    Mi, Hongyu
    Li, Haibing
    JOURNAL OF POWER SOURCES, 2024, 595
  • [7] Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries
    Tao Zhou
    Xuan Du
    Guo Gao
    Journal of Energy Chemistry, 2024, 95 (08) : 9 - 19
  • [8] Revealing the role of calcium ion intercalation of hydrated vanadium oxides for aqueous zinc-ion batteries
    Zhou, Tao
    Du, Xuan
    Gao, Guo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 95 : 9 - 19
  • [9] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai, Shuai
    Wang, Xi
    Wang, Qiming
    Chen, Zhuo
    Zhang, Yining
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22403 - 22410
  • [10] Bimetallic Intercalated Vanadium Oxide As a High-Performance Cathode for Aqueous Zinc Ion Batteries
    Bai S.
    Wang X.
    Wang Q.
    Chen Z.
    Zhang Y.
    ACS Applied Materials and Interfaces, 2024, 16 (17): : 22403 - 22410