Selective oxygen electroreduction to hydrogen peroxide in acidic media: The superiority of single-atom catalysts

被引:4
|
作者
Luo, Ergui [1 ]
Yang, Tongtong [2 ,3 ]
Liang, Jingyi [1 ]
Chang, Yuhong [1 ]
Zhang, Junming [1 ]
Hu, Tianjun [1 ]
Ge, Junjie [2 ]
Jia, Jianfeng [1 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Taiyuan 030032, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, Jilin Prov Key Lab Low Carbon Chem Power, State Key Lab Electroanalyt Chem, Changchun 130022, Peoples R China
基金
中国国家自然科学基金;
关键词
oxygen reduction reaction; H2O2; production; single-atom catalysts; selectivity; REDUCTION REACTION PATHWAY; DIRECT H2O2 PRODUCTION; RATIONAL DESIGN; O-2; REDUCTION; NOBLE-METAL; WASTE-WATER; CARBON; PLATINUM; ELECTROSYNTHESIS; OXIDATION;
D O I
10.1007/s12274-024-6505-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-electron oxygen reduction reaction (2e-ORR) provides an environmentally friendly direction for the on-site production of hydrogen peroxide (H2O2). Central to this technology is the exploitation of efficient, economical, and safe 2e-ORR electrocatalysts. This overview starts with the fundamental chemistry of ORR to highlight the decisive role of adsorbing intermediates on the reaction pathway and activity, followed by a comprehensive survey of the tuning strategies to favor 2e-ORR on traditional precious metals. The latest achievements in designing efficient and selective precious-metal-based single-atom catalysts (SACs) and metal-nitrogen-carbon (M-N-x/C) catalysts, from the aspects of material synthesis, theoretical calculations, and mass transport promotion, are systematically summarized. Brief introductions on the evaluation metrics for 2e-ORR catalysts and the primary reactor designs for cathodic H2O2 synthesis are also included. We conclude this review with an outlook on the challenges and direction of efforts to advance electrocatalytic 2e-ORR into realistic H2O2 production.
引用
收藏
页码:4668 / 4681
页数:14
相关论文
共 50 条
  • [31] Rational Design of Graphene-Supported Single-Atom Catalysts for Electroreduction of Nitrogen
    Yan, Min
    Arachchige, Lakshitha Jasin
    Dong, Ani
    Zhang, Xiao Li
    Dai, Zhongxu
    Sun, Chenghua
    INORGANIC CHEMISTRY, 2021, 60 (23) : 18314 - 18324
  • [32] Screening MXene-based single-atom catalysts for selective nitrate-to-ammonia electroreduction
    Wang, Mengting
    Hu, Tao
    Wang, Changhong
    Du, Feng
    Yang, Hongbin
    Sun, Wei
    Guo, Chunxian
    Li, Chang Ming
    SCIENCE CHINA-MATERIALS, 2023, 66 (07) : 2750 - 2758
  • [33] Assessing the Effect of a Schwarz P Surface on the Oxygen Electroreduction Performance of Porous Single-Atom Catalysts
    Xu, Zhi
    Xiao, Tianyu
    Li, Yinghua
    Pan, Yi
    Li, Chen
    Liu, Pan
    Xu, Qing
    Tian, Feng
    Wu, Liang
    Xu, Fugui
    Mai, Yiyong
    ADVANCED MATERIALS, 2025, 37 (04)
  • [34] Design strategies of carbon-based single-atom catalysts for efficient electrochemical hydrogen peroxide production
    Gao, Zhimin
    Zhu, Qiuzi
    Cao, Yanyan
    Wang, Cunshi
    Liu, Luming
    Zhu, Jianzhong
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (02):
  • [35] Advances in single-atom catalysts for oxygen electrodes
    Wang Y.
    Tang Y.
    Huagong Xuebao/CIESC Journal, 2020, 71 (10): : 4409 - 4428
  • [36] Ensemble Effect of Ruthenium Single-Atom and Nanoparticle Catalysts for Efficient Hydrogen Evolution in Neutral Media
    Liu, Yang
    Wu, Jianghua
    Zhang, Yuchen
    Jin, Xu
    Li, Jianming
    Xi, Xiaoke
    Deng, Yu
    Jiao, Shuhong
    Lei, Zhanwu
    Li, Xiyu
    Cao, Ruiguo
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (11) : 14240 - 14249
  • [37] Single-Atom Electrocatalysts for Water Splitting in Acidic Media
    Wu, Qinyu
    Saeed, Muhammad
    Wang, Jiaqi
    Ma, Xuejuan
    Tong, Shengfu
    Mei, Zongwei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2024, 12 (42): : 15307 - 15343
  • [38] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Li, Yalong
    Xu, Xiaolong
    Ai, Zizheng
    Zhang, Baoguo
    Shi, Dong
    Yang, Mingzhi
    Hu, Haixiao
    Shao, Yongliang
    Wu, Yongzhong
    Hao, Xiaopeng
    IONICS, 2023, 29 (02) : 455 - 481
  • [39] Arc plasma-deposited Co single-atom catalysts supported on an aligned carbon nanofiber for hydrogen peroxide electrosynthesis and an electro-Fenton process
    Hwang, Chang-Kyu
    Kim, Sooyeon
    Yoon, Ki Ro
    Le, Thao Thi
    Hoang, Chinh V.
    Choi, Jae Won
    Zhang, Wenjun
    Paek, Sae Yane
    Lee, Chung Hyeon
    Lee, Ji Hyun
    Chae, Keun Hwa
    Jeong, Sohee
    Lee, Seung Yong
    Ju, Byeong-Kwon
    Kim, Sang Hoon
    Han, Sang Soo
    Kim, Jong Min
    CARBON ENERGY, 2024, 6 (11)
  • [40] Recent progresses in the single-atom catalysts for the oxygen reduction reaction
    Yalong Li
    Xiaolong Xu
    Zizheng Ai
    Baoguo Zhang
    Dong Shi
    Mingzhi Yang
    Haixiao Hu
    Yongliang Shao
    Yongzhong Wu
    Xiaopeng Hao
    Ionics, 2023, 29 : 455 - 481