Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice

被引:9
|
作者
Li, Xiaoping [1 ]
Yao, Zhao [2 ]
Qi, Xinyue [3 ]
Cui, Jinling [1 ]
Zhou, Yuliang [3 ]
Tan, Yihong [3 ]
Huang, Xiaojun [4 ]
Ye, Hui [3 ]
机构
[1] Sichuan Tourism Univ, Coll Culinary Sci, Chengdu 610100, Peoples R China
[2] Sichuan Tourism Univ, Sch Hlth Ind, Chengdu 610100, Peoples R China
[3] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore 637371, Singapore
[4] Nanchang Univ, State Key Lab Food Sci & Resources, China Canada Joint Lab Food Sci & Technol Nanchang, 235 Nanjing East Rd, Nanchang 330047, Peoples R China
来源
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
Naringin; Obesity; Thermogenesis; Fat browning; Gut microbiota; Fecal metabolites; TISSUE; WHITE; ASSOCIATION; DYSFUNCTION; PROTECTS;
D O I
10.1016/j.crfs.2024.100683
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Naringin, a natural flavanone primarily found in citrus fruits, has garnered increased attention due to its recognized antioxidative, anti-inflammatory, and cardioprotective attributes. However, the functions of naringin in regulating energy expenditure are poorly understood. In the present study, we observed that twelve weeks of naringin supplementation substantially reshaped the metabolic profile of high-fat diet (HFD)-fed mice, by inhibiting body weight gain, reducing liver weight, and altering body compositions. Notably, naringin exhibited a remarkable capacity to augment whole-body energy expenditure of the tested mice by enhancing the thermogenic activity of brown adipose tissue (BAT) and stimulating browning of inguinal white adipose tissue (iWAT). Furthermore, our results showed naringin supplementation modified gut microbiota composition, specifically increasing the abundance of Bifidobacterium and Lachnospiraceae_bacterium_28-4, while reducing the abundance of Lachnospiraceae_bacterium_DW59 and Dubosiella_newyorkensis. Subsequently, we also found naringin supplementation altered fecal metabolite profile, by significantly promoting the production of taurine, tyrosol, and thymol, which act as potent activators of thermoregulation. Interestingly, the metabolic effects of naringin were abolished upon gut microbiota depletion through antibiotic intervention, concurrently leading the disappearance of naringin-induced thermogenesis and protective actions on diet-induced obesity. This discovery revealed a novel food-driven cross-sectional communication between gut bacteria and adipose tissues. Collectively, our data indicate that naringin supplementation stimulates BAT thermogenesis, alters fat distribution, promotes the browning process, and consequently inhibits body weight gain; importantly these metabolic effects require the participation of gut bacteria.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Tyrosol Ameliorates the Symptoms of Obesity, Promotes Adipose Thermogenesis, and Modulates the Composition of Gut Microbiota in HFD Fed Mice
    Li, Xiaoping
    Wei, Teng
    Li, Jingfang
    Yuan, Yuan
    Wu, Min
    Chen, Fang
    Deng, Ze-Yuan
    Luo, Ting
    MOLECULAR NUTRITION & FOOD RESEARCH, 2022, 66 (15)
  • [32] β-lapachone Ameliorates Obesity through Enhancing Browning of White Adipose Tissue in High fat-Diet Induced Obese Mice
    Ha, Tae Youl
    Choi, Won Hee
    Jang, Young Jin
    Ahn, Jiyun
    FASEB JOURNAL, 2015, 29
  • [33] Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice
    Ma, Lingyan
    Ni, Yinhua
    Wang, Zhe
    Tu, Wenqing
    Ni, Liyang
    Zhuge, Fen
    Zheng, Aqian
    Hu, Luting
    Zhao, Yufeng
    Zheng, Liujie
    Fu, Zhengwei
    GUT MICROBES, 2020, 12 (01) : 1 - 19
  • [34] Honokiol Ameliorates High-Fat-Diet-Induced Obesity of Different Sexes of Mice by Modulating the Composition of the Gut Microbiota
    Ding, Yanan
    Song, Zehe
    Li, Hao
    Chang, Ling
    Pan, Tingli
    Gu, Xueling
    He, Xi
    Fan, Zhiyong
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [35] Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling
    Sung-Soo Park
    Yeon-Joo Lee
    Hyuno Kang
    Garam Yang
    Eun Jeong Hong
    Jin Yeong Lim
    Sejong Oh
    Eungseok Kim
    Scientific Reports, 9
  • [36] Gochujang Ameliorates Hepatic Inflammation by Improving Dysbiosis of Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Lee, Eun-Ji
    Edward, Olivet Chiamaka
    Seo, Eun-Bi
    Mun, Eun-Gyung
    Jeong, Su-Ji
    Ha, Gwangsu
    Han, Anna
    Cha, Youn-Soo
    MICROORGANISMS, 2023, 11 (04)
  • [37] Lactobacillus amylovorus KU4 ameliorates diet-induced obesity in mice by promoting adipose browning through PPARγ signaling
    Park, Sung-Soo
    Lee, Yeon-Joo
    Kang, Hyuno
    Yang, Garam
    Hong, Eun Jeong
    Lim, Jin Yeong
    Oh, Sejong
    Kim, Eungseok
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [38] Rapid and Concomitant Gut Microbiota and Endocannabinoidome Response to Diet-Induced Obesity in Mice
    Lacroix, Sebastien
    Pechereau, Florent
    Leblanc, Nadine
    Boubertakh, Besma
    Houde, Alain
    Martin, Cyril
    Flamand, Nicolas
    Silvestri, Cristoforo
    Raymond, Frederic
    Di Marzo, Vincenzo
    Veilleux, Alain
    MSYSTEMS, 2019, 4 (06)
  • [39] Dietary fat and gut microbiota interactions determine diet-induced obesity in mice
    Kuebeck, Raphaela
    Bonet-Ripoll, Catalina
    Hoffmann, Christina
    Walker, Alesia
    Mueller, Veronika Maria
    Schueppel, Valentina Luise
    Lagkouvardos, Ilias
    Scholz, Birgit
    Engel, Karl-Heinz
    Daniel, Hannelore
    Schmitt-Kopplin, Philippe
    Haller, Dirk
    Clavel, Thomas
    Klingenspor, Martin
    MOLECULAR METABOLISM, 2016, 5 (12): : 1162 - 1174
  • [40] TRPV4 in adipose tissue ameliorates diet-induced obesity by promoting white adipocyte browning
    Zhang, Yan
    Xue, Jie
    Zhu, Wenjuan
    Wang, Haomin
    Xi, Pengjiao
    Tian, Derun
    TRANSLATIONAL RESEARCH, 2024, 266 : 16 - 31