Naringin ameliorates obesity via stimulating adipose thermogenesis and browning, and modulating gut microbiota in diet-induced obese mice

被引:9
|
作者
Li, Xiaoping [1 ]
Yao, Zhao [2 ]
Qi, Xinyue [3 ]
Cui, Jinling [1 ]
Zhou, Yuliang [3 ]
Tan, Yihong [3 ]
Huang, Xiaojun [4 ]
Ye, Hui [3 ]
机构
[1] Sichuan Tourism Univ, Coll Culinary Sci, Chengdu 610100, Peoples R China
[2] Sichuan Tourism Univ, Sch Hlth Ind, Chengdu 610100, Peoples R China
[3] Nanyang Technol Univ, Sch Chem Chem Engn & Biotechnol, Singapore 637371, Singapore
[4] Nanchang Univ, State Key Lab Food Sci & Resources, China Canada Joint Lab Food Sci & Technol Nanchang, 235 Nanjing East Rd, Nanchang 330047, Peoples R China
来源
基金
新加坡国家研究基金会; 英国医学研究理事会;
关键词
Naringin; Obesity; Thermogenesis; Fat browning; Gut microbiota; Fecal metabolites; TISSUE; WHITE; ASSOCIATION; DYSFUNCTION; PROTECTS;
D O I
10.1016/j.crfs.2024.100683
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Naringin, a natural flavanone primarily found in citrus fruits, has garnered increased attention due to its recognized antioxidative, anti-inflammatory, and cardioprotective attributes. However, the functions of naringin in regulating energy expenditure are poorly understood. In the present study, we observed that twelve weeks of naringin supplementation substantially reshaped the metabolic profile of high-fat diet (HFD)-fed mice, by inhibiting body weight gain, reducing liver weight, and altering body compositions. Notably, naringin exhibited a remarkable capacity to augment whole-body energy expenditure of the tested mice by enhancing the thermogenic activity of brown adipose tissue (BAT) and stimulating browning of inguinal white adipose tissue (iWAT). Furthermore, our results showed naringin supplementation modified gut microbiota composition, specifically increasing the abundance of Bifidobacterium and Lachnospiraceae_bacterium_28-4, while reducing the abundance of Lachnospiraceae_bacterium_DW59 and Dubosiella_newyorkensis. Subsequently, we also found naringin supplementation altered fecal metabolite profile, by significantly promoting the production of taurine, tyrosol, and thymol, which act as potent activators of thermoregulation. Interestingly, the metabolic effects of naringin were abolished upon gut microbiota depletion through antibiotic intervention, concurrently leading the disappearance of naringin-induced thermogenesis and protective actions on diet-induced obesity. This discovery revealed a novel food-driven cross-sectional communication between gut bacteria and adipose tissues. Collectively, our data indicate that naringin supplementation stimulates BAT thermogenesis, alters fat distribution, promotes the browning process, and consequently inhibits body weight gain; importantly these metabolic effects require the participation of gut bacteria.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Poly-γ-D-glutamic acid ameliorates obesity by modulating gut microbiota dysbiosis in high-fat diet-induced obesity mice
    Oh, Dong Nyoung
    Park, So Young
    Jang, Won Je
    Lee, Jong Min
    JOURNAL OF FUNCTIONAL FOODS, 2025, 127
  • [22] Salidroside protects mice from high-fat diet-induced obesity by modulating the gut microbiota
    Liu, Jiuxi
    Cai, Jiapei
    Zhang, Naisheng
    Tai, Jiandong
    Fan, Peng
    Dong, Xue
    Cao, Yongguo
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2023, 120
  • [23] Dietary D-lactate intake ameliorates metabolic syndrome via enhancing brown adipose tissue thermogenesis in diet-induced obese mice
    Yao, Zhijie
    Chen, Jinxiang
    Li, Xiaojing
    Liang, Shuxiao
    Zhang, Hao
    Li, Haitao
    Chen, Wei
    FOOD BIOSCIENCE, 2024, 62
  • [24] Erythropoietin (EPO) ameliorates obesity and glucose homeostasis by promoting thermogenesis and endocrine function of classical brown adipose tissue (BAT) in diet-induced obese mice
    Kodo, Kazuki
    Sugimoto, Satoru
    Nakajima, Hisakazu
    Mori, Jun
    Itoh, Ikuyo
    Fukuhara, Shota
    Shigehara, Keiichi
    Nishikawa, Taichiro
    Kosaka, Kitaro
    Hosoi, Hajime
    PLOS ONE, 2017, 12 (03):
  • [25] Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism
    Chen, Li
    Wang, Xian-jun
    Chen, Jie-xin
    Yang, Jing-cheng
    Lin, Ling
    Cai, Xian-Bin
    Chen, Yong-song
    DIABETOLOGY & METABOLIC SYNDROME, 2023, 15 (01):
  • [26] Caffeine ameliorates the metabolic syndrome in diet-induced obese mice through regulating the gut microbiota and serum metabolism
    Li Chen
    Xian-jun Wang
    Jie-xin Chen
    Jing-cheng Yang
    Xian-Bin Ling Lin
    Yong-song Cai
    Diabetology & Metabolic Syndrome, 15
  • [27] Glutamine Ameliorates Liver Steatosis via Regulation of Glycolipid Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice
    Zhou, Xinbo
    Zhang, Junjie
    Sun, Yutong
    Shen, Jian
    Sun, Bo
    Ma, Qingquan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (42) : 15656 - 15667
  • [28] Differences in Gut Microbiota and Brown Adipose Tissue Thermogenesis Determine the Sensitivity or Resistance to High-Fat Diet-Induced Obesity
    Xiao, Xiaoqiu
    Liu, Lingli
    Ai, Yanbiao
    Hou, Yi
    Cao, Xuemei
    Shi, Xiaoqin
    Li, Jibin
    DIABETES, 2017, 66 : A546 - A546
  • [29] Arginase inhibition ameliorates adipose tissue inflammation in mice with diet-induced obesity
    Hu, Huan
    Moon, Jiyoung
    Chung, Ji Hyung
    Kim, Oh Yoen
    Yu, Rina
    Shin, Min-Jeong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2015, 464 (03) : 840 - 847
  • [30] Prebiotics Impact Fecal Microbiota and Gut Physiology in Diet-Induced Obese Mice
    Liu, Tzu-Wen
    Holscher, Hannah
    Cephas, Kimberly
    Kerr, Katherine
    Mangian, Heather
    Tappenden, Kelly
    Swanson, Kelly
    FASEB JOURNAL, 2015, 29