The Bernstein problem for (X, Y )-Lipschitz surfaces in three-dimensional sub-Finsler Heisenberg groups

被引:1
作者
Giovannardi, Gianmarco [1 ]
Ritore, Manuel [2 ,3 ]
机构
[1] Univ Firenze, Dipartimento Matemat & Informat U Dini, Viale Morgani 67-A, I-50134 Florence, Italy
[2] Univ Granada, Dept Geometria & Topol, Granada, Spain
[3] Univ Granada, Res Unit MNat, Granada, Spain
基金
欧盟地平线“2020”;
关键词
Heisenberg group; area-stationary surfaces; sub-Finsler structure; stable surfaces; Bernstein problem; sub-Finsler perimeter; AREA-STATIONARY; MEAN-CURVATURE; LIPSCHITZ BOUNDARIES; STABLE SURFACES; MINIMAL GRAPHS; REGULARITY; PERIMETER; EXISTENCE; C-1;
D O I
10.1142/S0219199723500487
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the Heisenberg group H-1 with a sub-Finsler structure, an (X, Y )-Lipschitz surface which is complete, oriented, connected and stable must be a vertical plane. In particular, the result holds for entire intrinsic graphs of Euclidean Lipschitz functions.
引用
收藏
页数:38
相关论文
共 45 条
  • [11] Regularity of C1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group
    Cheng, Jih-Hsin
    Hwang, Jenn-Fang
    Yang, Paul
    [J]. MATHEMATISCHE ANNALEN, 2009, 344 (01) : 1 - 35
  • [12] Clarke FH., 1989, OPTIMIZATION NONSMOO
  • [13] A NOTABLE FAMILY OF ENTIRE INTRINSIC MINIMAL GRAPHS IN THE HEISENBERG GROUP WHICH ARE NOT PERIMETER MINIMIZING
    Danielli, D.
    Garofalo, N.
    Nhieu, D. M.
    [J]. AMERICAN JOURNAL OF MATHEMATICS, 2008, 130 (02) : 317 - 339
  • [14] The Bernstein Problem for Embedded Surfaces in the Heisenberg Group H
    Danielli, Donatella
    Garofalo, Nicola
    Nhieu, Duy-Minh
    Pauls, Scott D.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2010, 59 (02) : 563 - 594
  • [15] Do Carmo M.P., 1976, Differential Geometry of Curves and Surfaces
  • [16] Dragomir S., 2006, PROGR MATH, V246, pxvi+487
  • [17] Evans LC., 2015, Measure Theory and Fine Properties of Functions. Textbooks in Mathematics
  • [18] Folland GB., 1982, Hardy Spaces on Homogeneous Groups. Mathematical Notes, V28
  • [19] Franceschi V, 2023, J GEOM ANAL, V33, DOI 10.1007/s12220-022-01045-4
  • [20] Franchi B, 2001, MATH ANN, V321, P479