Optically pumped magnetometers are important instruments for imaging biological magnetic signals without the need for cryogenic cooling. These magnetometers are presently available in the commercial market and utilize the principles of atomic alignment or orientation, enabling remarkable sensitivity and precision in the measurement of magnetic fields. This research focuses on utilizing a spin-aligned atomic ensemble for magnetometry at zero field. An approach is introduced which involves evaluating how the linear polarization of light rotates as it passes through the atomic vapor to null the magnetic field. Analytical expressions are derived for the resulting spin alignment and photodetection signals. Experimental results are provided, demonstrating good agreement with the theoretical predictions. The sensitivity and bandwidth of the magnetometer are characterized based on the detected polarization rotation signal. Lastly, the practical utility of the magnetometer for medical applications is demonstrated by successfully detecting a synthetic cardiac signal.