Zero-field optical magnetometer based on spin alignment

被引:5
|
作者
Meraki, A. [1 ]
Elson, L. [1 ]
Ho, N. [1 ]
Akbar, A. [1 ]
Kozbial, M. [2 ]
Kolodynski, J. [2 ]
Jensen, K. [1 ]
机构
[1] Univ Nottingham, Sch Phys & Astron, Univ Pk, Nottingham NG7 2RD, England
[2] Univ Warsaw, Ctr Quantum Opt Technol, Ctr New Technol, Banacha 2c, PL-02097 Warsaw, Poland
关键词
PUMPED MAGNETOMETERS; DIAGNOSTIC EVALUATION; MAGNETOENCEPHALOGRAPHY; EPILEPSY;
D O I
10.1103/PhysRevA.108.062610
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optically pumped magnetometers are important instruments for imaging biological magnetic signals without the need for cryogenic cooling. These magnetometers are presently available in the commercial market and utilize the principles of atomic alignment or orientation, enabling remarkable sensitivity and precision in the measurement of magnetic fields. This research focuses on utilizing a spin-aligned atomic ensemble for magnetometry at zero field. An approach is introduced which involves evaluating how the linear polarization of light rotates as it passes through the atomic vapor to null the magnetic field. Analytical expressions are derived for the resulting spin alignment and photodetection signals. Experimental results are provided, demonstrating good agreement with the theoretical predictions. The sensitivity and bandwidth of the magnetometer are characterized based on the detected polarization rotation signal. Lastly, the practical utility of the magnetometer for medical applications is demonstrated by successfully detecting a synthetic cardiac signal.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Detuned square-wave optical modulation zero-field atomic magnetometer
    School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing
    100191, China
    不详
    310051, China
    不详
    230088, China
    不详
    310051, China
    不详
    100191, China
    Proc SPIE Int Soc Opt Eng,
  • [2] An optically modulated zero-field atomic magnetometer with suppressed spin-exchange broadening
    Jimenez-Martinez, R.
    Knappe, S.
    Kitching, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (04):
  • [3] QuSpin zero-field magnetometer characterization for the TUCAN experiment
    Zhao, M.
    Mammei, R.
    Fujimoto, D.
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [4] Zero-field magnetometry based on the combination of atomic orientation and alignment
    Le Gal, Gwenael
    Palacios-Laloy, Agustin
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [5] Zero-field spin wave turns
    Klima, Jan
    Wojewoda, Ondrej
    Roucka, Vaclav
    Molnar, Tomas
    Holobradek, Jakub
    Urbanek, Michal
    APPLIED PHYSICS LETTERS, 2024, 124 (11)
  • [6] Zero-field muon spin echo
    Suleimanov, NM
    Moiseev, SA
    Clark-Gayther, MA
    Cottrell, SP
    Cox, SFJ
    PHYSICA B, 2000, 289 : 676 - 680
  • [7] Spin Hamiltonian and zero-field splitting
    NATO Advanced Study Institutes Series, Series B: Physics, 1992, 301
  • [8] Zero-field remote detection of NMR with a microfabricated atomic magnetometer
    Ledbetter, M. P.
    Savukov, I. M.
    Budker, D.
    Shah, V.
    Knappe, S.
    Kitching, J.
    Michalak, D. J.
    Xu, S.
    Pines, A.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (07) : 2286 - 2290
  • [9] Spin-Exchange Relaxation Free Atomic Magnetometer for Zero-Field Nuclear Magnetic Resonance Detection
    Chen B.
    Jiang M.
    Ji Y.
    Bian J.
    Xu W.
    Zhang H.
    Peng X.
    Zhongguo Jiguang/Chinese Journal of Lasers, 2017, 44 (10):
  • [10] In-situ magnetic field compensation for zero-field NMOR atomic magnetometer
    Zhang, Changhao
    Liu, Jiali
    Zhao, Xin
    Chen, Junlin
    Yang, Jiaqi
    Li, Jianli
    Jiang, Liwei
    SENSORS AND ACTUATORS A-PHYSICAL, 2025, 387