Comparison of cytotoxic and photoluminescence properties between Fe2O3 and Fe3O4

被引:7
作者
Deepthi, S. [1 ,2 ]
Vidya, Y. S. [3 ]
Manjunatha, H. C. [4 ]
Sridhar, K. N. [1 ]
Manjunatha, S. [5 ]
Munirathnam, R. [4 ]
Ganesh, T. [2 ]
机构
[1] Govt First Grade Coll, Dept Phys, Kolar 563101, Karnataka, India
[2] Bharathidasan Univ, Rajah Serfoji Govt Coll, Dept Phys, Tiruchirappalli 613005, Tamil Nadu, India
[3] Lal Bahadur Shastri Govt First Grade Coll, Dept Phys, Bangalore 560032, Karnataka, India
[4] Govt Coll Women, Dept Phys, Kolar 563101, Karnataka, India
[5] BMS Coll Engn, Dept Chem, Bengaluru 60019, Karnataka, India
关键词
Hematite; Magnetite; Coprecipitation; Photoluminescence; Cytotoxic; OXIDE ALPHA-FE2O3 NANOPARTICLES; MAGNETIC-PROPERTIES; COMPLEXES; PRECIPITATION;
D O I
10.1016/j.inoche.2023.111101
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The water soluble Fe2O3 and Fe3O4 nanoparticles (NPs) were synthesized by coprecipitation method followed by calcination. The Bragg reflections confirm the formation of hexagonal alpha-Fe2O3 and cubic inverse spinel structure Fe3O4 NPs. The surface morphology consists of irregular shaped agglomerated NPs. The direct energy band gap estimated from Wood and Tauc's plot was found to be 1.75 and 1.81 eV for alpha-Fe2O3 and Fe3O4 NPs respectively. The photoluminescence spectra and CIE clearly show the blue emission from both samples whereas high intensity is observed for Fe3O4 NPs. The cytotoxic properties of Fe2O3 and Fe3O4 NPs were studied and analyzed against MDA-MB-231 breast cancer cell line and compared with standard drug Cisplatin. Compared to Fe2O3,Fe3O4 NPs shows good cytotoxic property more than Cisplatin. Thus, the present synthesized water soluble Fe2O3 and Fe3O4 NPs might be a good candidate as a nanophosphor in display technology and a anticancer drug carrier.
引用
收藏
页数:7
相关论文
共 38 条
  • [1] Structural, optical, photoluminescence and electrical properties of p-CuO/n-ZnO:Sn and p-CuO/n-α-Fe2O3 efficient hetero-junctions for optoelectronic applications
    Ajili, Mejda
    Ben Ayed, Rihab
    Kamoun, Najoua Turki
    [J]. JOURNAL OF LUMINESCENCE, 2022, 241
  • [2] Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells
    Akhtar, Mohd Javed
    Alhadlaq, Hisham A.
    Alshamsan, Aws
    Khan, M. A. Majeed
    Ahamed, Maqusood
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [3] In Situ Biosynthesis of Reduced Alpha Hematite (α-Fe2O3) Nanoparticles by Stevia Rebaudiana L. Leaf Extract: Insights into Antioxidant, Antimicrobial, and Anticancer Properties
    Alshawwa, Samar Zuhair
    Mohammed, Eman J.
    Hashim, Nada
    Sharaf, Mohamed
    Selim, Samy
    Alhuthali, Hayaa M.
    Alzahrani, Hind A.
    Mekky, Alsayed E.
    Elharrif, Mohamed G.
    [J]. ANTIBIOTICS-BASEL, 2022, 11 (09):
  • [4] Antic Z, 2009, ACTA PHYS POL A, V116, P622
  • [5] Novel route for fabrication of nanostructured α-Fe2O3 gas sensor
    Bandgar, D. K.
    Navale, S. T.
    Khuspe, G. D.
    Pawar, S. A.
    Mulik, R. N.
    Patil, V. B.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2014, 17 : 67 - 73
  • [6] Chen BJ, 2008, J NANOSCI NANOTECHNO, V8, P1165, DOI 10.1166/jnn.2008.347
  • [7] Farahmandjou M, 2015, PHYS CHEM RES, V3, P193
  • [8] Magnetite (Fe3O4) Nanoparticles in Biomedical Application: From Synthesis to Surface Functionalisation
    Ganapathe, Lokesh Srinath
    Mohamed, Mohd Ambri
    Yunus, Rozan Mohamad
    Berhanuddin, Dilla Duryha
    [J]. MAGNETOCHEMISTRY, 2020, 6 (04) : 1 - 35
  • [9] Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications
    Ghazanfari, Mohammad Reza
    Kashefi, Mehrdad
    Shams, Seyyedeh Fatemeh
    Jaafari, Mahmoud Reza
    [J]. BIOCHEMISTRY RESEARCH INTERNATIONAL, 2016, 2016
  • [10] Multimodal cancer cell therapy using Au@Fe2O3 core-shell nanoparticles in combination with photo-thermo-radiotherapy
    Hosseini, Vahid
    Mirrahimi, Mehri
    Shakeri-Zadeh, Ali
    Koosha, Fereshteh
    Ghalandari, Behafarid
    Maleki, Shayan
    Komeili, Ali
    Kamrava, S. Kamran
    [J]. PHOTODIAGNOSIS AND PHOTODYNAMIC THERAPY, 2018, 24 : 129 - 135