Advances in ferrofluid-based triboelectric nanogenerators: Design, performance, and prospects for energy harvesting applications

被引:14
|
作者
Kulandaivel, Anu [1 ]
Potu, Supraja [1 ]
Babu, Anjaly [1 ]
Madathil, Navaneeth [1 ]
Velpula, Mahesh [1 ]
Rajaboina, Rakesh Kumar [1 ]
Khanapuram, Uday Kumar [1 ]
机构
[1] Natl Inst Technol, Dept Phys, Energy Mat & Devices Lab, Warangal 506004, Telangana, India
关键词
Energy harvesting; Ferrofluids; Liquid-solid triboelectric nanogenerators; Sensors; Hybrid energy harvesting; WATER-WAVE ENERGY; ELECTRICAL-CONDUCTIVITY; CONTACT-ELECTRIFICATION; ACOUSTIC PROPERTIES; GENERATOR; FABRICATION; VISCOSITY;
D O I
10.1016/j.nanoen.2023.109110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Small-scale electronic devices need self-powering technology, and one way to do that is to use mechanical energy harvesters. These devices can turn ambient mechanical energy into electricity. Triboelectric nanogenerators (TENGs) are the best choice for converting mechanical energy into electrical energy, but they have a problem in converting ultra-low vibrations in the environment. Traditional TENGs with solid frictional layers are not wellsuited for this purpose. To address this limitation, liquid-solid (L-S) TENGs have emerged, which can capture ultra-low vibrational frequencies due to their fluidic nature. Despite this advantage, L-S TENGs exhibit lower energy conversion efficiency than their solid counterparts, and they cannot be used in hybrid energy harvesting. New research has started using ferrofluids in TENGs to address these issues. The resulting ferrofluid-solid based (FF-S) TENGs have showcased a promising outcome by replacing the liquid component with ferrofluids. These systems have demonstrated their capability to capture ultra-low vibrational frequencies effectively and are also used for hybrid energy harvesting. In the current review, we present a comprehensive overview of diverse designs, operational mechanisms, and applications of FF-S TENGs. Furthermore, we delve into the potential opportunities and prospects for integrating FF-S TENGs into practical applications.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023, 8 (21):
  • [22] Triboelectric Nanogenerators for Marine Applications: Recent Advances in Energy Harvesting, Monitoring, and Self-Powered Equipment
    Dip, Tanvir Mahady
    Arin, Md. Reasat Aktar
    Anik, Habibur Rahman
    Uddin, Md Mazbah
    Tushar, Shariful Islam
    Sayam, Abdullah
    Sharma, Suraj
    ADVANCED MATERIALS TECHNOLOGIES, 2023,
  • [23] Performance Analysis of a Ferrofluid-Based Electromagnetic Energy Harvester
    Liu, Qi
    Daqaq, Mohammed F.
    Li, Gang
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (05)
  • [24] Wearable triboelectric nanogenerators based on hybridized triboelectric modes for harvesting mechanical energy
    Qiu, Yu
    Yang, Dechao
    Li, Bing
    Shao, Shuai
    Hu, Lizhong
    RSC ADVANCES, 2018, 8 (46) : 26243 - 26250
  • [25] Strategies for effectively harvesting wind energy based on triboelectric nanogenerators
    Ren, Zewei
    Wu, Liting
    Pang, Yaokun
    Zhang, Weiqiang
    Yang, Rusen
    NANO ENERGY, 2022, 100
  • [26] Hybrid Energy-Harvesting Systems Based on Triboelectric Nanogenerators
    Pang, Yaokun
    Cao, Yunteng
    Derakhshani, Masoud
    Fang, Yuhui
    Wang, Zhong Lin
    Cao, Changyong
    MATTER, 2021, 4 (01) : 116 - 143
  • [27] Energy Harvesting Using Wastepaper-Based Triboelectric Nanogenerators
    Zhang, Renyun
    Hummelgard, Magnus
    Ortegren, Jonas
    Andersson, Henrik
    Olsen, Martin
    Chen, Wenshuai
    Wang, Peihong
    Dahlstrom, Christina
    Eivazi, Alireza
    Norgren, Magnus
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (11)
  • [28] Harvesting circuits for triboelectric nanogenerators for wearable applications
    Macario, David
    Domingos, Ismael
    Carvalho, Nuno
    Pinho, Pedro
    Alves, Helena
    ISCIENCE, 2022, 25 (04)
  • [29] Structural design strategies of triboelectric nanogenerators for omnidirectional wind energy harvesting
    Jingu Jeong
    Eunhwan Jo
    Jong-An Choi
    Yunsung Kang
    Soonjae Pyo
    Micro and Nano Systems Letters, 13 (1)
  • [30] Electromagnetic ferrofluid-based energy harvester
    Bibo, A.
    Masana, R.
    King, A.
    Li, G.
    Daqaq, M. F.
    PHYSICS LETTERS A, 2012, 376 (32) : 2163 - 2166