Enhancing Cryptocurrency Price Forecasting by Integrating Machine Learning with Social Media and Market Data

被引:7
|
作者
Belcastro, Loris [1 ]
Carbone, Domenico [1 ]
Cosentino, Cristian [1 ]
Marozzo, Fabrizio [1 ]
Trunfio, Paolo [1 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst Engn, I-87036 Arcavacata Di Rende, Italy
关键词
cryptocurrency; social media data; price prediction; trading recommendation; machine learning; deep learning;
D O I
10.3390/a16120542
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Since the advent of Bitcoin, the cryptocurrency landscape has seen the emergence of several virtual currencies that have quickly established their presence in the global market. The dynamics of this market, influenced by a multitude of factors that are difficult to predict, pose a challenge to fully comprehend its underlying insights. This paper proposes a methodology for suggesting when it is appropriate to buy or sell cryptocurrencies, in order to maximize profits. Starting from large sets of market and social media data, our methodology combines different statistical, text analytics, and deep learning techniques to support a recommendation trading algorithm. In particular, we exploit additional information such as correlation between social media posts and price fluctuations, causal connection among prices, and the sentiment of social media users regarding cryptocurrencies. Several experiments were carried out on historical data to assess the effectiveness of the trading algorithm, achieving an overall average gain of 194% without transaction fees and 117% when considering fees. In particular, among the different types of cryptocurrencies considered (i.e., high capitalization, solid projects, and meme coins), the trading algorithm has proven to be very effective in predicting the price trends of influential meme coins, yielding considerably higher profits compared to other cryptocurrency types.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Enhancing social media analysis with visual data analytics: A deep learning approach
    Shin D.
    He S.
    Lee G.M.
    Whinston A.B.
    Cetintas S.
    Lee K.-C.
    MIS Quarterly: Management Information Systems, 2020, 44 (04): : 1459 - 1492
  • [32] ENHANCING SOCIAL MEDIA ANALYSIS WITH VISUAL DATA ANALYTICS: A DEEP LEARNING APPROACH
    Shin, Donghyuk
    He, Shu
    Lee, Gene Moo
    Whinston, Andrew B.
    Cetintas, Suleyman
    Lee, Kuang-Chih
    MIS QUARTERLY, 2020, 44 (04) : 1459 - 1492
  • [33] Harnessing technical indicators with deep learning based price forecasting for cryptocurrency trading☆
    Kang, Mingu
    Hong, Joongi
    Kim, Suntae
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2025, 660
  • [34] Electricity Price Forecasting: The Dawn of Machine Learning
    Jedrzejewski, Arkadiusz
    Lago, Jesus
    Marcjasz, Grzegorz
    Weron, Rafal
    IEEE POWER & ENERGY MAGAZINE, 2022, 20 (03): : 24 - 31
  • [35] Prediction of Cryptocurrency Price using Time Series Data and Deep Learning Algorithms
    Nair, Michael
    Marie, Mohamed I.
    Abd-Elmegid, Laila A.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 338 - 347
  • [36] A Comparison of Deep Learning vs Traditional Machine Learning for Electricity Price Forecasting
    O'Leary, Christian
    Lynch, Conor
    Bain, Rose
    Smith, Gary
    Grimes, Diarmuid
    2021 4TH INTERNATIONAL CONFERENCE ON INFORMATION AND COMPUTER TECHNOLOGIES (ICICT 2021), 2021, : 6 - 12
  • [37] Analysis of Social Media Impact on Stock Price Movements Using Machine Learning Anomaly Detection
    Cruz, Richard
    Kinyua, Johnson
    Mutigwe, Charles
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 3405 - 3423
  • [39] Comparative Performance of Machine Learning Ensemble Algorithms for Forecasting Cryptocurrency Prices
    Derbentsev, V
    Babenko, V
    Khrustalev, K.
    Obruch, H.
    Khrustalova, S.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (01): : 140 - 148
  • [40] Forecasting the Bitcoin price using the various Machine Learning: A systematic review in data-driven marketing
    Boozary, Payam
    Sheykhan, Sogand
    Ghorbantanhaei, Hamed
    SYSTEMS AND SOFT COMPUTING, 2025, 7