Exact coefficients of finite-size corrections in the Ising model with Brascamp-Kunz boundary conditions and their relationships for strip and cylindrical geometries

被引:1
|
作者
Izmailian, Nickolay [1 ]
Kenna, R. [2 ]
Papoyan, Vl V. [3 ,4 ]
机构
[1] Yerevan Phys Inst, A Alikhanyan Natl Lab, Alikhanian Bros 2, Yerevan 375036, Armenia
[2] Coventry Univ, Fluid & Complex Syst Res Ctr, Stat Phys Res Grp, Coventry CV1 5FB, England
[3] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[4] Dubna State Univ, Dubna 141980, Russia
关键词
Ising model; finite-size corrections; Brascamp-Kunz boundary conditions; dimer model; two dimensions; STATISTICAL-MECHANICS;
D O I
10.1088/1751-8121/acf96b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive exact finite-size corrections for the free energy F of the Ising model on the M x 2N square lattice with Brascamp-Kunz boundary conditions. We calculate ratios r(p)(rho) of pth coefficients of F for the infinitely long cylinder (M -> infinity) and the infinitely long Brascamp-Kunz strip (N -> infinity) at varying values of the aspect ratio rho = (M+ 1)/2N. Like previous studies have shown for the two-dimensional dimer model, the limiting values p -> infinity of r(p)(rho) exhibit abrupt anomalous behavior at certain values of rho. These critical values of rho and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.
引用
收藏
页数:20
相关论文
共 50 条