Exact coefficients of finite-size corrections in the Ising model with Brascamp-Kunz boundary conditions and their relationships for strip and cylindrical geometries

被引:1
|
作者
Izmailian, Nickolay [1 ]
Kenna, R. [2 ]
Papoyan, Vl V. [3 ,4 ]
机构
[1] Yerevan Phys Inst, A Alikhanyan Natl Lab, Alikhanian Bros 2, Yerevan 375036, Armenia
[2] Coventry Univ, Fluid & Complex Syst Res Ctr, Stat Phys Res Grp, Coventry CV1 5FB, England
[3] Joint Inst Nucl Res, Bogoliubov Lab Theoret Phys, Dubna 141980, Russia
[4] Dubna State Univ, Dubna 141980, Russia
关键词
Ising model; finite-size corrections; Brascamp-Kunz boundary conditions; dimer model; two dimensions; STATISTICAL-MECHANICS;
D O I
10.1088/1751-8121/acf96b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We derive exact finite-size corrections for the free energy F of the Ising model on the M x 2N square lattice with Brascamp-Kunz boundary conditions. We calculate ratios r(p)(rho) of pth coefficients of F for the infinitely long cylinder (M -> infinity) and the infinitely long Brascamp-Kunz strip (N -> infinity) at varying values of the aspect ratio rho = (M+ 1)/2N. Like previous studies have shown for the two-dimensional dimer model, the limiting values p -> infinity of r(p)(rho) exhibit abrupt anomalous behavior at certain values of rho. These critical values of rho and the limiting values of the finite-size-expansion-coefficient ratios differ, however, between the two models.
引用
收藏
页数:20
相关论文
共 9 条
  • [1] Exact finite-size corrections for the spanning-tree model under different boundary conditions
    Izmailian, N. Sh.
    Kenna, R.
    PHYSICAL REVIEW E, 2015, 91 (02):
  • [2] Exact finite-size corrections in the dimer model on a cylinder
    Papoyan, Vladimir V.
    PHYSICA SCRIPTA, 2025, 100 (04)
  • [3] Finite-size scaling for the 2D Ising model with minus boundary conditions
    Kotecky, R
    Medved, I
    JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (5-6) : 905 - 943
  • [4] Finite-Size Scaling for the 2D Ising Model with Minus Boundary Conditions
    R. Kotecký
    I. Medved'
    Journal of Statistical Physics, 2001, 104 : 905 - 943
  • [5] Exact finite-size corrections in the dimer model on a planar square lattice
    Izmailian, Nikolay Sh
    Papoyan, Vladimir V.
    Ziff, Robert M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (33)
  • [6] Finite-size corrections to correlation function and susceptibility in 2D Ising model
    Kaupuzs, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2006, 17 (08): : 1095 - 1105
  • [7] Boundary conditions and amplitude ratios for finite-size corrections of a one-dimensional quantum spin model
    Izmailian, N. Sh.
    Hu, Chin-Kum
    NUCLEAR PHYSICS B, 2009, 808 (03) : 613 - 624
  • [8] Investigation of the Finite Size Properties of the Ising Model Under Various Boundary Conditions
    Amin, Magdy E.
    Moubark, Mohamed
    Amin, Yasmin
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2020, 75 (02): : 175 - 182
  • [9] Corrections to finite-size scaling in the 3D Ising model based on nonperturbative approaches and Monte Carlo simulations
    Kaupuzs, J.
    Melnik, R. V. N.
    Rimsans, J.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2017, 28 (04):