More Reliable Neighborhood Contrastive Learning for Novel Class Discovery in Sensor-Based Human Activity Recognition

被引:3
作者
Zhang, Mingcong [1 ]
Zhu, Tao [1 ]
Nie, Mingxing [1 ]
Liu, Zhenyu [1 ]
机构
[1] Univ South China, Sch Comp Sci, Hengyang 421001, Peoples R China
关键词
human activity recognition; novel class discovery; neighborhood; contrastive learning; similarity; sensor;
D O I
10.3390/s23239529
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Human Activity Recognition (HAR) systems have made significant progress in recognizing and classifying human activities using sensor data from a variety of sensors. Nevertheless, they have struggled to automatically discover novel activity classes within massive amounts of unlabeled sensor data without external supervision. This restricts their ability to classify new activities of unlabeled sensor data in real-world deployments where fully supervised settings are not applicable. To address this limitation, this paper presents the Novel Class Discovery (NCD) problem, which aims to classify new class activities of unlabeled sensor data by fully utilizing existing activities of labeled data. To address this problem, we propose a new end-to-end framework called More Reliable Neighborhood Contrastive Learning (MRNCL), which is a variant of the Neighborhood Contrastive Learning (NCL) framework commonly used in visual domain. Compared to NCL, our proposed MRNCL framework is more lightweight and introduces an effective similarity measure that can find more reliable k-nearest neighbors of an unlabeled query sample in the embedding space. These neighbors contribute to contrastive learning to facilitate the model. Extensive experiments on three public sensor datasets demonstrate that the proposed model outperforms existing methods in the NCD task in sensor-based HAR, as indicated by the fact that our model performs better in clustering performance of new activity class instances.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] A survey on unsupervised learning for wearable sensor-based activity recognition
    Ige, Ayokunle Olalekan
    Noor, Mohd Halim Mohd
    APPLIED SOFT COMPUTING, 2022, 127
  • [22] Sensor Data Augmentation by Resampling in Contrastive Learning for Human Activity Recognition
    Wang, Jinqiang
    Zhu, Tao
    Gan, Jingyuan
    Chen, Liming Luke
    Ning, Huansheng
    Wan, Yaping
    IEEE SENSORS JOURNAL, 2022, 22 (23) : 22994 - 23008
  • [23] Unsupervised Diffusion Model for Sensor-based Human Activity Recognition
    Zuo, Si
    Rey, Vitor Fortes
    Suh, Sungho
    Sigg, Stephan
    Lukowicz, Paul
    ADJUNCT PROCEEDINGS OF THE 2023 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING & THE 2023 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTING, UBICOMP/ISWC 2023 ADJUNCT, 2023, : 205 - 205
  • [24] A Pattern Mining Approach to Sensor-Based Human Activity Recognition
    Gu, Tao
    Wang, Liang
    Wu, Zhanqing
    Tao, Xianping
    Lu, Jian
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2011, 23 (09) : 1359 - 1372
  • [25] Wearable Sensor-Based Human Activity Recognition with Transformer Model
    Dirgova Luptakova, Iveta
    Kubovcik, Martin
    Pospichal, Jiri
    SENSORS, 2022, 22 (05)
  • [26] HiHAR: A Hierarchical Hybrid Deep Learning Architecture for Wearable Sensor-Based Human Activity Recognition
    Nguyen Thi Hoai Thu
    Han, Dong Seog
    IEEE ACCESS, 2021, 9 : 145271 - 145281
  • [27] Lifelong Adaptive Machine Learning for Sensor-Based Human Activity Recognition Using Prototypical Networks
    Adaimi, Rebecca
    Thomaz, Edison
    SENSORS, 2022, 22 (18)
  • [28] A Novel Sensor-Based Human Activity Recognition Method Based on Hybrid Feature Selection and Combinational Optimization
    Tian, Yiming
    Zhang, Jie
    Li, Lipeng
    Liu, Zuojun
    IEEE ACCESS, 2021, 9 : 107235 - 107249
  • [29] A comparative analysis on sensor-based human activity recognition using various deep learning techniques
    Indumathi V.
    Prabakeran S.
    Lecture Notes on Data Engineering and Communications Technologies, 2021, 66 : 919 - 938
  • [30] Sensor-based Activity Recognition using Deep Learning: A Comparative Study
    Trabelsi, Imen
    Francoise, Jules
    Bellik, Yacine
    PROCEEDINGS OF 2022 8TH INTERNATIONAL CONFERENCE ON MOVEMENT AND COMPUTING, MOCO 2022, 2022,