A human-interpretable machine learning pipeline based on ultrasound to support leiomyosarcoma diagnosis

被引:7
|
作者
Lombardi, Angela [1 ]
Arezzo, Francesca [2 ]
Di Sciascio, Eugenio [1 ]
Ardito, Carmelo [3 ]
Mongelli, Michele [4 ]
Di Lillo, Nicola [4 ]
Fascilla, Fabiana Divina [5 ]
Silvestris, Erica [2 ]
Kardhashi, Anila [2 ]
Putino, Carmela [4 ]
Cazzolla, Ambrogio [2 ]
Loizzi, Vera [2 ,6 ]
Cazzato, Gerardo [7 ]
Cormio, Gennaro [2 ,6 ]
Di Noia, Tommaso [1 ]
机构
[1] Politecn Bari, Dept Elect & Informat Engn DEI, Bari, Italy
[2] IRCCS Ist Tumori Giovanni Paolo II, Gynecol Oncol Unit, Interdisciplinar Dept Med, Bari, Italy
[3] LUM Giuseppe Degennaro Univ, Dept Engn, Casamassima, Bari, Italy
[4] Univ Bari Aldo Moro, Dept Biomed Sci & Human Oncol, Obstet & Gynecol Unit, Bari, Italy
[5] Di Venere Hosp, Obstet & Gynecol Unit, Bari, Italy
[6] Univ Bari Aldo Moro, Interdisciplinar Dept Med, Bari, Italy
[7] Univ Bari Aldo Moro, Dept Emergency & Organ Transplantat DETO, Sect Pathol, Bari, Italy
关键词
Human-centered AI; Machine learning; eXplainable artificial intelligence; Interpretability; Ultrasound; Leiomyosarcoma; CAD; DIFFERENTIAL-DIAGNOSIS; UTERINE SARCOMA; MORCELLATION; LEIOMYOMA; EXPLANATIONS; REGRESSION; SELECTION; OUTCOMES; IMPACT; CANCER;
D O I
10.1016/j.artmed.2023.102697
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The preoperative evaluation of myometrial tumors is essential to avoid delayed treatment and to establish the appropriate surgical approach. Specifically, the differential diagnosis of leiomyosarcoma (LMS) is particularly challenging due to the overlapping of clinical, laboratory and ultrasound features between fibroids and LMS. In this work, we present a human-interpretable machine learning (ML) pipeline to support the preoperative differential diagnosis of LMS from leiomyomas, based on both clinical data and gynecological ultrasound assessment of 68 patients (8 with LMS diagnosis). The pipeline provides the following novel contributions: (i) end-users have been involved both in the definition of the ML tasks and in the evaluation of the overall approach; (ii) clinical specialists get a full understanding of both the decision-making mechanisms of the ML algorithms and the impact of the features on each automatic decision. Moreover, the proposed pipeline addresses some of the problems concerning both the imbalance of the two classes by analyzing and selecting the best combination of the synthetic oversampling strategy of the minority class and the classification algorithm among different choices, and the explainability of the features at global and local levels. The results show very high performance of the best strategy (AUC = 0.99, F1 = 0.87) and the strong and stable impact of two ultrasound-based features (i.e., tumor borders and consistency of the lesions). Furthermore, the SHAP algorithm was exploited to quantify the impact of the features at the local level and a specific module was developed to provide a template-based natural language (NL) translation of the explanations for enhancing their interpretability and fostering the use of ML in the clinical setting.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Automated ICD coding for primary diagnosis via clinically interpretable machine learning
    Diao, Xiaolin
    Huo, Yanni
    Zhao, Shuai
    Yuan, Jing
    Cui, Meng
    Wang, Yuxin
    Lian, Xiaodan
    Zhao, Wei
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 153
  • [42] Interpretable Prediction of a Decentralized Smart Grid Based on Machine Learning and Explainable Artificial Intelligence
    Cifci, Ahmet
    IEEE ACCESS, 2025, 13 : 36285 - 36305
  • [43] Developing an interpretable machine learning model for diagnosing gout using clinical and ultrasound features
    Xiao, Lishan
    Zhao, Yizhe
    Li, Yuchen
    Yan, Mengmeng
    Liu, Yongming
    Liu, Manhua
    Ning, Chunping
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 184
  • [44] Interpretable Machine Learning for Characterization of Focal Liver Lesions by Contrast-Enhanced Ultrasound
    Turco, Simona
    Tiyarattanachai, Thodsawit
    Ebrahimkheil, Kambez
    Eisenbrey, John
    Kamaya, Aya
    Mischi, Massimo
    Lyshchik, Andrej
    El Kaffas, Ahmed
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (05) : 1670 - 1681
  • [45] Model Based on Ultrasound Radiomics and Machine Learning to Preoperative Differentiation of Follicular Thyroid Neoplasm
    Deng, Yiwen
    Zeng, Qiao
    Zhao, Yu
    Hu, Zhen
    Zhan, Changmiao
    Guo, Liangyun
    Lai, Binghuang
    Huang, Zhiping
    Fu, Zhiyong
    Zhang, Chunquan
    JOURNAL OF ULTRASOUND IN MEDICINE, 2025, 44 (03) : 567 - 579
  • [46] A Non-Invasive Interpretable Diagnosis of Melanoma Skin Cancer Using Deep Learning and Ensemble Stacking of Machine Learning Models
    Alfi, Iftiaz A.
    Rahman, Md Mahfuzur
    Shorfuzzaman, Mohammad
    Nazir, Amril
    DIAGNOSTICS, 2022, 12 (03)
  • [47] Using an Interpretable Amino Acid-Based Machine Learning Method to Enhance the Diagnosis of Major Depressive Disorder
    Ho, Cyrus Su Hui
    Tan, Trevor Wei Kiat
    Khoe, Howard Cai Hao
    Chan, Yee Ling
    Tay, Gabrielle Wann Nii
    Tang, Tong Boon
    JOURNAL OF CLINICAL MEDICINE, 2024, 13 (05)
  • [48] A machine learning-based lung ultrasound algorithm for the diagnosis of acute heart failure
    Coiro, Stefano
    Lacomblez, Claire
    Duarte, Kevin
    Gargani, Luna
    Rastogi, Tripti
    Chouihed, Tahar
    Girerd, Nicolas
    INTERNAL AND EMERGENCY MEDICINE, 2024, 19 (08) : 2309 - 2318
  • [49] A Machine Learning Approach for Human Breath Diagnosis with Soft Sensors
    Suresh, K. C.
    Prabha, R.
    Hemavathy, N.
    Sivarajeswari, S.
    Gokulakrishnan, D.
    Kumar, M. Jagadeesh
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [50] Current Challenges and Future Opportunities for XAI in Machine Learning-Based Clinical Decision Support Systems: A Systematic Review
    Antoniadi, Anna Markella
    Du, Yuhan
    Guendouz, Yasmine
    Wei, Lan
    Mazo, Claudia
    Becker, Brett A.
    Mooney, Catherine
    APPLIED SCIENCES-BASEL, 2021, 11 (11):