General Methods to Synchronize Fractional Discrete Reaction-Diffusion Systems Applied to the Glycolysis Model

被引:10
作者
Hamadneh, Tareq [1 ]
Hioual, Amel [2 ]
Saadeh, Rania [3 ]
Abdoon, Mohamed A. [4 ]
Almutairi, Dalal Khalid [5 ]
Khalid, Thwiba A. [6 ,7 ]
Ouannas, Adel [8 ]
机构
[1] Al Zaytoonah Univ Jordan, Fac Sci, Dept Math, Amman 11733, Jordan
[2] Univ Oum El Bouaghi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Zarqa Univ, Dept Math, Zarqa 13110, Jordan
[4] King Saud Univ, Common Year Deanship 1, Dept Basic Sci, Riyadh 12373, Saudi Arabia
[5] Majmmah Univ, Coll Educ Majmaah, Dept Math, Al Majmaah 11952, Saudi Arabia
[6] Al Baha Univ, Fac Sci & Arts, Dept Math, Baljurashi 65622, Saudi Arabia
[7] Acad Engn & Med Sci, Dept Math, Khartoum 12045, Sudan
[8] Univ Oum EL Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
关键词
discrete fractional reaction-diffusion model; Lyapunov function; local stability; synchronization; STABILITY ANALYSIS; EQUATIONS;
D O I
10.3390/fractalfract7110828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Because they are useful for both enabling numerical simulations and containing well-defined physical phenomena, discrete fractional reaction-diffusion models have attracted a great deal of interest from academics. Within the family of fractional reaction-diffusion models, a discrete form is examined in detail in this study. Furthermore, we investigate the complex synchronization dynamics of a suggested discrete master-slave reaction-diffusion system using the accuracy of linear control techniques combined with a fractional discrete Lyapunov approach. This study's deviation from the behavior of equivalents with integer orders makes it very fascinating. Like the non-local nature inherent in Caputo fractional derivatives, it creates a memory Lyapunov function that is closely linked to the historical background of the system. The investigation provides a strong basis to the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Finite-time boundary stabilization of reaction-diffusion systems
    Wu, Kai-Ning
    Sun, Han-Xiao
    Shi, Peng
    Lim, Cheng-Chew
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2018, 28 (05) : 1641 - 1652
  • [22] Synchronization of Fractional Reaction-Diffusion Complex Networks With Unknown Couplings
    Shen, Mouquan
    Wang, Chen
    Wang, Qing-Guo
    Sun, Yonghui
    Zong, Guangdeng
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 4503 - 4512
  • [23] Boundary stabilization of random reaction-diffusion systems
    Xue, Zhuo
    Wu, Kai-Ning
    Wu, Zhaojing
    Wu, Yongxin
    NONLINEAR DYNAMICS, 2025, : 11867 - 11879
  • [24] DIFFUSIVE STABILITY OF OSCILLATIONS IN REACTION-DIFFUSION SYSTEMS
    Gallay, Thierry
    Scheel, Arnd
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (05) : 2571 - 2598
  • [25] Boundary stabilisation of fractional reaction-diffusion systems with time-varying delays
    Mathiyalagan, K.
    Renugadevi, T.
    Zhang, Huiyan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2024, 55 (02) : 209 - 221
  • [26] Model order reduction of parametrized nonlinear reaction-diffusion systems
    Grepl, Martin A.
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 43 : 33 - 44
  • [27] A reaction-diffusion model with nonlinearity driven diffusion
    Ma Man-jun
    Hu Jia-jia
    Zhang Jun-jie
    Tao Ji-cheng
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (03) : 290 - 302
  • [28] Bifurcations and Synchronization in Networks of Unstable Reaction-Diffusion Systems
    Miranville, Alain
    Cantin, Guillaume
    Aziz-Alaoui, M. A.
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (02)
  • [29] LDG Methods for Reaction-diffusion Systems with Application of Krylov Implicit Integration Factor Methods
    An, Na
    Huang, Chaobao
    Yu, Xijun
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (03): : 727 - 749
  • [30] Nonstandard finite differences numerical methods for a vegetation reaction-diffusion model
    Conte, Dajana
    Pagano, Giovanni
    Paternoster, Beatrice
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419