General Methods to Synchronize Fractional Discrete Reaction-Diffusion Systems Applied to the Glycolysis Model

被引:10
作者
Hamadneh, Tareq [1 ]
Hioual, Amel [2 ]
Saadeh, Rania [3 ]
Abdoon, Mohamed A. [4 ]
Almutairi, Dalal Khalid [5 ]
Khalid, Thwiba A. [6 ,7 ]
Ouannas, Adel [8 ]
机构
[1] Al Zaytoonah Univ Jordan, Fac Sci, Dept Math, Amman 11733, Jordan
[2] Univ Oum El Bouaghi, Lab Dynam Syst & Control, Oum El Bouaghi 04000, Algeria
[3] Zarqa Univ, Dept Math, Zarqa 13110, Jordan
[4] King Saud Univ, Common Year Deanship 1, Dept Basic Sci, Riyadh 12373, Saudi Arabia
[5] Majmmah Univ, Coll Educ Majmaah, Dept Math, Al Majmaah 11952, Saudi Arabia
[6] Al Baha Univ, Fac Sci & Arts, Dept Math, Baljurashi 65622, Saudi Arabia
[7] Acad Engn & Med Sci, Dept Math, Khartoum 12045, Sudan
[8] Univ Oum EL Bouaghi, Dept Math & Comp Sci, Oum El Bouaghi 04000, Algeria
关键词
discrete fractional reaction-diffusion model; Lyapunov function; local stability; synchronization; STABILITY ANALYSIS; EQUATIONS;
D O I
10.3390/fractalfract7110828
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Because they are useful for both enabling numerical simulations and containing well-defined physical phenomena, discrete fractional reaction-diffusion models have attracted a great deal of interest from academics. Within the family of fractional reaction-diffusion models, a discrete form is examined in detail in this study. Furthermore, we investigate the complex synchronization dynamics of a suggested discrete master-slave reaction-diffusion system using the accuracy of linear control techniques combined with a fractional discrete Lyapunov approach. This study's deviation from the behavior of equivalents with integer orders makes it very fascinating. Like the non-local nature inherent in Caputo fractional derivatives, it creates a memory Lyapunov function that is closely linked to the historical background of the system. The investigation provides a strong basis to the theoretical results.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction-Diffusion Model
    Hamadneh, Tareq
    Hioual, Amel
    Alsayyed, Omar
    AL-Khassawneh, Yazan Alaya
    Al-Husban, Abdallah
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [2] On Stability of a Fractional Discrete Reaction-Diffusion Epidemic Model
    Alsayyed, Omar
    Hioual, Amel
    Gharib, Gharib M.
    Abualhomos, Mayada
    Al-Tarawneh, Hassan
    Alsauodi, Maha S.
    Abu-Alkishik, Nabeela
    Al-Husban, Abdallah
    Ouannas, Adel
    FRACTAL AND FRACTIONAL, 2023, 7 (10)
  • [3] Passivity of fractional reaction-diffusion systems
    Cao, Yan
    Zhou, Wei-Jie
    Liu, Xiao-Zhen
    Wu, Kai-Ning
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 476
  • [4] Synchronization of the Glycolysis Reaction-Diffusion Model via Linear Control Law
    Ouannas, Adel
    Batiha, Iqbal M.
    Bekiros, Stelios
    Liu, Jinping
    Jahanshahi, Hadi
    Aly, Ayman A.
    Alghtani, Abdulaziz H.
    ENTROPY, 2021, 23 (11)
  • [5] DIMENSION ESTIMATE OF ATTRACTORS FOR COMPLEX NETWORKS OF REACTION-DIFFUSION SYSTEMS APPLIED TO AN ECOLOGICAL MODEL
    Cantin, Guillaume
    Aziz-Alaoui, M. A.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (02) : 623 - 650
  • [6] Complex-order fractional diffusion in reaction-diffusion systems
    Bueno-Orovio, Alfonso
    Burrage, Kevin
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 119
  • [7] EXPLOSIVE BEHAVIOR IN SPATIALLY DISCRETE REACTION-DIFFUSION SYSTEMS
    Carpio, Ana
    Duro, Gema
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 12 (04): : 693 - 711
  • [8] TRAVELLING CORNERS FOR SPATIALLY DISCRETE REACTION-DIFFUSION SYSTEMS
    Hupkes, H. J.
    Morelli, L.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (03) : 1609 - 1667
  • [9] A NONLINEAR FRACTIONAL REACTION-DIFFUSION SYSTEM APPLIED TO IMAGE DENOISING AND DECOMPOSITION
    Atlas, Abdelghafour
    Bendahmane, Mostafa
    Karami, Fahd
    Meskine, Driss
    Oubbih, Omar
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2021, 26 (09): : 4963 - 4998
  • [10] Mathematical analysis and numerical simulation of patterns in fractional and classical reaction-diffusion systems
    Owolabi, Kolade M.
    CHAOS SOLITONS & FRACTALS, 2016, 93 : 89 - 98