Integrated analysis of transcriptome and metabolome reveals insights for low-temperature germination in hybrid rapeseeds (Brassica napus L.)

被引:5
|
作者
Song, Jiayu [1 ]
Chen, Yutiao [1 ]
Jiang, GenShui [2 ]
Zhao, Jianyi [1 ]
Wang, Wenjia [3 ]
Hong, Xiaofu [1 ]
机构
[1] Zhejiang Acad Agr Sci, Inst Crop & Nucl Technol Utilizat, Hangzhou 310021, Zhejiang, Peoples R China
[2] Hangzhou Seed Ind Grp Co Ltd, Hangzhou 310021, Zhejiang, Peoples R China
[3] Shaoxing & Zhuji Agr Bur, Agr Extens Extending Stn, Shaoxing 312000, Zhejiang, Peoples R China
关键词
Brassica napus L; Cold stress; Transcriptome; Metabolome; CYTOSOLIC GLUTAMINE SYNTHETASE1/2; 2C PROTEIN PHOSPHATASES; ABSCISIC-ACID; OXIDATIVE STRESS; SEVERE REDUCTION; ASSIMILATION; TOLERANCE; AMMONIUM; ENZYMES; MECHANISMS;
D O I
10.1016/j.jplph.2023.154120
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Rapeseed (Brassica napus L.) is an important oil-producing crop in China. However, cold stress in winter can adversely affect rapeseed germination and subsequently result in poor seed yield at the mature stage. Studies of differences in the transcriptional and metabolic levels of rapeseed under cold stress can improve our understanding of low-temperature germination (LTG). The current study aimed to identify the cold stress-responsive genes, metabolites, and metabolic pathways based on a combined transcriptome and metabolome analysis to understand the difference of LTG and tolerance mechanisms in the cold-tolerant (Yueyou1301, YY1301) and cold-normal (Fengyou737, FY737) rapeseed varieties. Compared to FY737, YY1301 had a higher germination rate, indole acetic acid (IAA) and gibberellic acid (GA)/(abscisic acid) ABA levels at 7.5 degrees C. A total of 951 differentially expressed genes (DEGs) and 86 differentially accumulated metabolites (DAMs) were identified in two rapeseed varieties. Conjoint analysis revealed 12 DAMs and 5 DEGs that were strongly correlated in inducing rapeseed LTG, which were mainly related to carbohydrate and amino acid metabolism, specifically the pathway of glutathione metabolism and starch and sucrose metabolism. These results suggest that the DAMs and DEGs involved in crucial biological pathways may regulate the LTG of rapeseed. It increases the understanding of the molecular mechanisms underlying the adaptation of rapeseed to LTG.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Associating transcriptional regulation for rapid germination of rapeseed (Brassica napus L.) under low temperature stress through weighted gene co-expression network analysis
    Luo, Tao
    Xian, Mengzhu
    Zhang, Chen
    Zhang, Chunni
    Hu, Liyong
    Xu, Zhenghua
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [42] A transcriptome analysis reveals a role for the indole GLS-linked auxin biosynthesis in secondary dormancy in rapeseed (Brassica napus L.)
    Liu, Lei
    Liu, Fuxia
    Chu, Jinfang
    Yi, Xin
    Fan, Wenqi
    Tang, Tang
    Chen, Guimin
    Guo, Qiuhuan
    Zhao, Xiangxiang
    BMC PLANT BIOLOGY, 2019, 19 (1)
  • [43] Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities
    Zhang, Jiaying
    Li, Shuigen
    An, Haishan
    Zhang, Xueying
    Zhou, Boqiang
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [44] Integrated Analysis of Transcriptome and Metabolome Reveals Differential Responses to Alternaria brassicicola Infection in Cabbage (Brassica oleracea var. capitata)
    Lei, Jinzhou
    Zhang, Wei
    Yu, Fangwei
    Ni, Meng
    Liu, Zhigang
    Wang, Cheng
    Li, Jianbin
    Song, Jianghua
    Wang, Shenyun
    GENES, 2024, 15 (05)
  • [45] Transcriptome Analysis of Near-Isogenic Lines Provides Novel Insights into Genes Associated with Seed Low-Temperature Germination Ability in Maize (Zea mays L.)
    Li, Xuhui
    Hu, Hairui
    Hu, Xinmin
    Wang, Guihua
    Du, Xuemei
    Li, Li
    Wang, Feng
    Fu, Junjie
    Wang, Guoying
    Wang, Jianhua
    Gu, Riliang
    PLANTS-BASEL, 2022, 11 (07):
  • [46] Comparative Metabolome and Transcriptome Analysis Reveals the Defense Mechanism of Chinese Cabbage (Brassica rapa L. ssp. pekinensis) against Plasmodiophora brassicae Infection
    Wei, Xiaochun
    Du, Yingyi
    Zhang, Wenjing
    Zhao, Yanyan
    Yang, Shuangjuan
    Su, Henan
    Wang, Zhiyong
    Wei, Fang
    Tian, Baoming
    Yang, Haohui
    Zhang, Xiaowei
    Yuan, Yuxiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (19)
  • [47] Integrative analysis of metabolome and transcriptome reveals the mechanism of color formation in pepper fruit (Capsicum annuum L.)
    Liu, Yuhua
    Lv, Junheng
    Liu, Zhoubin
    Wang, Jing
    Yang, Bozhi
    Chen, Wenchao
    Ou, Lijun
    Dai, Xiongze
    Zhang, Zhuqing
    Zou, Xuexiao
    FOOD CHEMISTRY, 2020, 306
  • [48] Metabolome and transcriptome sequencing analysis reveals anthocyanins in the red flowers of black locust (Robinia pseudoacacia L.)
    Zhang, Yanzhao
    Lu, Xi
    Jia, Linglan
    Jin, Huanhuan
    Cheng, Yanwei
    FOOD SCIENCE AND TECHNOLOGY, 2022, 42
  • [49] Genome-Wide Association Mapping Unravels the Genetic Control of Seed Vigor under Low-Temperature Conditions in Rapeseed (Brassica napus L.)
    Luo, Tao
    Zhang, Yuting
    Zhang, Chunni
    Nelson, Matthew N.
    Yuan, Jinzhan
    Guo, Liang
    Xu, Zhenghua
    PLANTS-BASEL, 2021, 10 (03): : 1 - 20
  • [50] Integrated Metabolome and Transcriptome Analysis Reveals a Potential Mechanism for Water Accumulation Mediated Translucency in Pineapple (Ananas comosus (L.) Merr.) Fruit
    Chen, Jing
    Yao, Yanli
    Zeng, Hui
    Zhang, Xiumei
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (08)