Spatial-temporal graph neural network traffic prediction based load balancing with reinforcement learning in cellular networks

被引:11
|
作者
Liu, Shang
He, Miao [2 ]
Wu, Zhiqiang [1 ]
Lu, Peng [1 ]
Gu, Weixi [3 ]
机构
[1] PKU WUHAN Inst Artificial Intelligence, Wuhan 430070, Hubei, Peoples R China
[2] Yanqi Lake Beijing Inst Math Sci & Applicat, Beijing 101408, Peoples R China
[3] China Acad Ind Internet, Beijing 100015, Peoples R China
基金
美国国家科学基金会; 国家重点研发计划;
关键词
Cellular networks; Load balancing; Traffic prediction; Graph neural network; Reinforcement learning; TIME;
D O I
10.1016/j.inffus.2023.102079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Balancing network traffic among base stations poses a primary challenge for mobile operators because of the escalating demand for enhanced data speeds in large-scale 5G radio applications. Within cellular networks, traffic flow prediction constitutes a pivotal issue in numerous applications, such as resource allocation, load balancing, and network slicing. In this paper, traffic prediction based load balancing framework with reinforcement learning is proposed to optimize neighbor cell relational parameters that can better balance traffic within a defined geographical cluster. Spatial-temporal-event cross attention graph convolution neural network (STECA-GCN) is put forward to predict the precise traffic flow. The model takes event dimension features into account, while also incorporating direct cross-fusion among diverse features. Concurrently, we have developed a strategy based on deep reinforcement learning to facilitate dynamic load balancing decisions. Simulation results show that our proposed load balancing framework can improve overall system performance. In particular, the combination of loading rate and energy efficiency can achieve a 12% improvement. The load balancing of the base station can better deal with social emergencies.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Pritam Bikram
    Shubhajyoti Das
    Arindam Biswas
    Applied Intelligence, 2024, 54 : 2716 - 2749
  • [42] Attentive graph structure learning embedded in deep spatial-temporal graph neural network for traffic forecasting
    Bikram, Pritam
    Das, Shubhajyoti
    Biswas, Arindam
    APPLIED INTELLIGENCE, 2024, 54 (03) : 2716 - 2749
  • [43] An effective spatial-temporal attention based neural network for traffic flow prediction
    Do, Loan N. N.
    Vu, Hai L.
    Vo, Bao Q.
    Liu, Zhiyuan
    Dinh Phung
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 108 : 12 - 28
  • [44] Traffic Flow Prediction Based on Spatial-Temporal Attention Convolutional Neural Network
    Xia Y.
    Liu M.
    Xinan Jiaotong Daxue Xuebao/Journal of Southwest Jiaotong University, 2023, 58 (02): : 340 - 347
  • [45] Multistep Traffic Speed Prediction from Spatial-Temporal Dependencies Using Graph Neural Networks
    Wu, Xuesong
    Fang, Jie
    Liu, Zhijia
    Wu, Xiongwei
    JOURNAL OF TRANSPORTATION ENGINEERING PART A-SYSTEMS, 2021, 147 (12)
  • [46] Semi-dynamic spatial-temporal graph neural network for traffic state prediction in waterways
    Li, Le
    Pan, Mingyang
    Liu, Zongying
    Sun, Hui
    Zhang, Ruolan
    OCEAN ENGINEERING, 2024, 293
  • [47] Capturing spatial-temporal correlations with Attention based Graph Convolutional Network for network traffic prediction
    Guo, Yingya
    Peng, Yufei
    Hao, Run
    Tang, Xiang
    JOURNAL OF NETWORK AND COMPUTER APPLICATIONS, 2023, 220
  • [48] Spatial-Temporal Fusion Graph Neural Networks for Traffic Flow Forecasting
    Li, Mengzhang
    Zhu, Zhanxing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4189 - 4196
  • [49] Dynamic Spatial-Temporal Graph Convolutional Neural Networks for Traffic Forecasting
    Diao, Zulong
    Wang, Xin
    Zhang, Dafang
    Liu, Yingru
    Xie, Kun
    He, Shaoyao
    THIRTY-THIRD AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FIRST INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / NINTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, : 890 - 897
  • [50] Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting
    Shao, Zezhi
    Zhang, Zhao
    Wei, Wei
    Wang, Fei
    Xu, Yongjun
    Cao, Xin
    Jensen, Christian S.
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (11): : 2733 - 2746