Trajectory Design for UAV-Based Inspection System: A Deep Reinforcement Learning Approach
被引:4
作者:
Zhang, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
Zhang, Wei
[1
]
Yang, Dingcheng
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
Yang, Dingcheng
[1
]
Wu, Fahui
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
Wu, Fahui
[1
]
Xiao, Lin
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R ChinaNanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
Xiao, Lin
[1
]
机构:
[1] Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
来源:
2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS
|
2023年
关键词:
cellular-connected UAV;
patro inspection;
trajectory design;
deep reforcement learning;
CONNECTIVITY;
D O I:
10.1109/ICCWORKSHOPS57953.2023.10283670
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
In this paper, we consider a cellular connection-based UAV cruise detection system, where UAV needs traverse multiple fixed cruise points for aerial monitorning while maintain a satisfactory communication connectivity with cellular networks. We aim to minimize the weighted sum of UAV mission completion time and expected communication interruption duration by jointly optimizing the crossing strategy and UAV flight trajectory. Specifically, leveraging the state-of-the-art DRL algorithm, we utilize discrete-time techniques to transform the optimization problem into a Markov decision process (MDP) and propose an architecture with actor-critic based twin-delayed deep deterministic policy gradient(TD3) algorithm for aerial monitoring trajectory design (TD3-AM). The algorithm deals with continuous control problems with infinite state and action spaces. UAV can directly interacts with the environment to learn movement strategies and make continuous action values. Simulation results show that the algorithm has better performance than the baseline methods.
机构:
Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
Li, Zewu
Xu, Chen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
Xu, Chen
Zhang, Zhanpeng
论文数: 0引用数: 0
h-index: 0
机构:
State Grid Jibei Informat & Telecommun Co, Beijing 100053, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
Zhang, Zhanpeng
Wu, Runze
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Elect & Elect Engn, Beijing 102206, Peoples R ChinaBeijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
机构:
Air Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R ChinaAir Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R China
Dong, Runze
Wang, Buhong
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R ChinaAir Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R China
Wang, Buhong
Tian, Jiwei
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Engn Univ, Sch Air Traff Control & Nav, Xian 710043, Peoples R ChinaAir Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R China
Tian, Jiwei
Cheng, Tianhao
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R ChinaAir Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R China
Cheng, Tianhao
Diao, Danyu
论文数: 0引用数: 0
h-index: 0
机构:
Air Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R ChinaAir Force Engn Univ, Sch Informat & Nav, Xian 710077, Peoples R China