Trajectory Design for UAV-Based Inspection System: A Deep Reinforcement Learning Approach

被引:4
|
作者
Zhang, Wei [1 ]
Yang, Dingcheng [1 ]
Wu, Fahui [1 ]
Xiao, Lin [1 ]
机构
[1] Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
关键词
cellular-connected UAV; patro inspection; trajectory design; deep reforcement learning; CONNECTIVITY;
D O I
10.1109/ICCWORKSHOPS57953.2023.10283670
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a cellular connection-based UAV cruise detection system, where UAV needs traverse multiple fixed cruise points for aerial monitorning while maintain a satisfactory communication connectivity with cellular networks. We aim to minimize the weighted sum of UAV mission completion time and expected communication interruption duration by jointly optimizing the crossing strategy and UAV flight trajectory. Specifically, leveraging the state-of-the-art DRL algorithm, we utilize discrete-time techniques to transform the optimization problem into a Markov decision process (MDP) and propose an architecture with actor-critic based twin-delayed deep deterministic policy gradient(TD3) algorithm for aerial monitoring trajectory design (TD3-AM). The algorithm deals with continuous control problems with infinite state and action spaces. UAV can directly interacts with the environment to learn movement strategies and make continuous action values. Simulation results show that the algorithm has better performance than the baseline methods.
引用
收藏
页码:1654 / 1659
页数:6
相关论文
共 50 条
  • [11] Joint AoI-Aware UAVs Trajectory Planning and Data Collection in UAV-Based IoT Systems: A Deep Reinforcement Learning Approach
    Xiao, Xiongbing
    Wang, Xiumin
    Lin, Weiwei
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (04) : 6484 - 6495
  • [12] A Deep Reinforcement Learning Approach for Federated Learning Optimization with UAV Trajectory Planning
    Zhang, Chunyu
    Liu, Yiming
    Zhang, Zhi
    2023 IEEE 34TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS, PIMRC, 2023,
  • [13] Deep Reinforcement Learning Approach for Joint Trajectory Design in Multi-UAV IoT Networks
    Xu, Shu
    Zhan, Xiangyu
    Li, Chunguo
    Wang, Dongming
    Yang, Luxi
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (03) : 3389 - 3394
  • [14] Cellular-Connected UAV Trajectory Design With Connectivity Constraint: A Deep Reinforcement Learning Approach
    Gao, Yunfei
    Xiao, Lin
    Wu, Fahui
    Yang, Dingcheng
    Sun, Zhongxiang
    IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, 2021, 5 (03): : 1369 - 1380
  • [15] Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach
    Yiwen Nie
    Junhui Zhao
    Jun Liu
    Jing Jiang
    Ruijin Ding
    中国通信, 2020, 17 (10) : 129 - 141
  • [16] Energy-Efficient UAV Trajectory Design for Backscatter Communication: A Deep Reinforcement Learning Approach
    Nie, Yiwen
    Zhao, Junhui
    Liu, Jun
    Jiang, Jing
    Ding, Ruijin
    CHINA COMMUNICATIONS, 2020, 17 (10) : 129 - 141
  • [17] Deep Reinforcement Learning for Trajectory Design and Power Allocation in UAV Networks
    Zhao, Nan
    Cheng, Yiqiang
    Pei, Yiyang
    Liang, Ying-Chang
    Niyato, Dusit
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [18] Optimal Trajectory Learning for UAV-BS Video Provisioning System: A Deep Reinforcement Learning Approach
    Kwon, Dohyun
    Kim, Joongheon
    33RD INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN 2019), 2019, : 372 - 374
  • [19] Trajectory Planning of UAV in Wireless Powered IoT System Based on Deep Reinforcement Learning
    Zhang, Jidong
    Yu, Yu
    Wang, Zhigang
    Ao, Shaopeng
    Tang, Jie
    Zhang, Xiuyin
    Wong, Kai-Kit
    2020 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS IN CHINA (ICCC), 2020, : 645 - 650
  • [20] Deep Reinforcement Learning-Based Distributed 3D UAV Trajectory Design
    He, Huasen
    Yuan, Wenke
    Chen, Shuangwu
    Jiang, Xiaofeng
    Yang, Feng
    Yang, Jian
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2024, 72 (06) : 3736 - 3751