Trajectory Design for UAV-Based Inspection System: A Deep Reinforcement Learning Approach

被引:4
作者
Zhang, Wei [1 ]
Yang, Dingcheng [1 ]
Wu, Fahui [1 ]
Xiao, Lin [1 ]
机构
[1] Nanchang Univ, Dept Elect Informat Engn Sch, Nanchang 330031, Jiangxi, Peoples R China
来源
2023 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS | 2023年
关键词
cellular-connected UAV; patro inspection; trajectory design; deep reforcement learning; CONNECTIVITY;
D O I
10.1109/ICCWORKSHOPS57953.2023.10283670
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we consider a cellular connection-based UAV cruise detection system, where UAV needs traverse multiple fixed cruise points for aerial monitorning while maintain a satisfactory communication connectivity with cellular networks. We aim to minimize the weighted sum of UAV mission completion time and expected communication interruption duration by jointly optimizing the crossing strategy and UAV flight trajectory. Specifically, leveraging the state-of-the-art DRL algorithm, we utilize discrete-time techniques to transform the optimization problem into a Markov decision process (MDP) and propose an architecture with actor-critic based twin-delayed deep deterministic policy gradient(TD3) algorithm for aerial monitoring trajectory design (TD3-AM). The algorithm deals with continuous control problems with infinite state and action spaces. UAV can directly interacts with the environment to learn movement strategies and make continuous action values. Simulation results show that the algorithm has better performance than the baseline methods.
引用
收藏
页码:1654 / 1659
页数:6
相关论文
共 50 条
  • [11] Multi-agent Deep Reinforcement Learning-based Trajectory Design for UAV-aided Edge Computing System
    Lu, Gengyuan
    Chang, Zheng
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [12] Trajectory Design for UAV-Enabled Maritime Secure Communications: A Reinforcement Learning Approach
    Liu, Jintao
    Zeng, Feng
    Wang, Wei
    Sheng, Zhichao
    Wei, Xinchen
    Cumanan, Kanapathippillai
    CHINA COMMUNICATIONS, 2022, 19 (09) : 26 - 36
  • [13] Federated deep reinforcement learning based trajectory design for UAV-assisted networks with mobile ground devices
    Gao, Yunfei
    Liu, Mingliu
    Yuan, Xiaopeng
    Hu, Yulin
    Sun, Peng
    Schmeink, Anke
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [14] Optimal UAV-Trajectory Design in a Dynamic Environment Using NOMA and Deep Reinforcement Learning
    Banaeizadeh, Fatemeh
    Barbeau, Michel
    Garcia-Alfarot, Joaquin
    Kranakis, Evangelos
    2024 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE 2024, 2024, : 277 - 282
  • [15] Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches
    Chang, Zheng
    Deng, Hengwei
    You, Li
    Min, Geyong
    Garg, Sahil
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2940 - 2951
  • [16] Joint Trajectory Design and BS Association for Cellular-Connected UAV: An Imitation-Augmented Deep Reinforcement Learning Approach
    Chen, Yu-Jia
    Huang, Da-Yu
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (04): : 2843 - 2858
  • [17] Three-Dimension Trajectory Design for Multi-UAV Wireless Network With Deep Reinforcement Learning
    Zhang, Wenqi
    Wang, Qiang
    Liu, Xiao
    Liu, Yuanwei
    Chen, Yue
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2021, 70 (01) : 600 - 612
  • [18] Intelligent Trajectory Design in UAV-Aided Communications With Reinforcement Learning
    Yin, Sixing
    Zhao, Shuo
    Zhao, Yifei
    Yu, F. Richard
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2019, 68 (08) : 8227 - 8231
  • [19] Deep Reinforcement Learning-Based 3D Trajectory Planning for Cellular Connected UAV
    Liu, Xiang
    Zhong, Weizhi
    Wang, Xin
    Duan, Hongtao
    Fan, Zhenxiong
    Jin, Haowen
    Huang, Yang
    Lin, Zhipeng
    DRONES, 2024, 8 (05)
  • [20] Multi-Agent Deep Reinforcement Learning for Trajectory Design and Power Allocation in Multi-UAV Networks
    Zhao, Nan
    Liu, Zehua
    Cheng, Yiqiang
    IEEE ACCESS, 2020, 8 : 139670 - 139679