LIGHTWEIGHT LANDSLIDE DETECTION METHOD BASED ON DEPTH SEPARABLE CONVOLUTION AND DOUBLE SELF-ATTENTION MECHANISM

被引:0
作者
Li, Weibin [1 ,2 ]
Kong, Yuhui [1 ]
Wang, Rongfang [1 ]
Huo, Chunlei [3 ]
Chen, Jiawei [1 ]
Niu, Yi [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Lab AI, Hangzhou Inst Technol, Hangzhou 311231, Peoples R China
[3] Natl Lab Pattern Recognit, Beijing 100190, Peoples R China
来源
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2023年
基金
中国国家自然科学基金;
关键词
Depthwise Separable Convolution; self-attention mechanism; image classification; landslide detection;
D O I
10.1109/IGARSS52108.2023.10281612
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
The landslide detection methods using remote sensing images are mostly based on the traditional convolutional neural network model with high depth and complexity. The paper proposes a lightweight method based on Depth Separable Convolution and Double Self-Attention Mechanism (DSC-DSAM) for detecting landslides in remote sensing images. This method aims to reduce storage space and improve detection speed while maintaining accuracy. In our model, it starts with using a lightweight convolutional neural network model. Then, the dual self-attention mechanism is applied to improve the accuracy.The proposed method is compared with other existing classification models, and it is shown to have advantages in memory space and detection speed while maintaining accuracy.
引用
收藏
页码:6198 / 6201
页数:4
相关论文
共 11 条
  • [1] [Anonymous], 2018, PROCEEDINGS OF THE I, DOI DOI 10.1109/CVPR.2018.00474
  • [2] DaViT: Dual Attention Vision Transformers
    Ding, Mingyu
    Xiao, Bin
    Codella, Noel
    Luo, Ping
    Wang, Jingdong
    Yuan, Lu
    [J]. COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 74 - 92
  • [3] Dosovitskiy A., 2020, PREPRINT
  • [4] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [5] Searching for MobileNetV3
    Howard, Andrew
    Sandler, Mark
    Chu, Grace
    Chen, Liang-Chieh
    Chen, Bo
    Tan, Mingxing
    Wang, Weijun
    Zhu, Yukun
    Pang, Ruoming
    Vasudevan, Vijay
    Le, Quoc V.
    Adam, Hartwig
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1314 - 1324
  • [6] Densely Connected Convolutional Networks
    Huang, Gao
    Liu, Zhuang
    van der Maaten, Laurens
    Weinberger, Kilian Q.
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 2261 - 2269
  • [7] Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks
    Ji, Shunping
    Yu, Dawen
    Shen, Chaoyong
    Li, Weile
    Xu, Qiang
    [J]. LANDSLIDES, 2020, 17 (06) : 1337 - 1352
  • [8] Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
    Liu, Ze
    Lin, Yutong
    Cao, Yue
    Hu, Han
    Wei, Yixuan
    Zhang, Zheng
    Lin, Stephen
    Guo, Baining
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9992 - 10002
  • [9] ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
    Ma, Ningning
    Zhang, Xiangyu
    Zheng, Hai-Tao
    Sun, Jian
    [J]. COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 122 - 138
  • [10] Tan MX, 2021, PR MACH LEARN RES, V139, P7102