High response and selectivity of bimetallic MOFs-derived metal oxides Co3O4/In2O3 nanoparticles to TEA

被引:30
|
作者
Zhang, Zhenkai [1 ]
Yue, Chen [1 ]
Dastan, Davoud [2 ]
Zhang, Dandan [1 ]
Zhang, Xinfang [3 ]
Yin, Xi-Tao [1 ]
Ma, Xiaoguang [1 ]
机构
[1] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264000, Peoples R China
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14850 USA
[3] Univ Sci & Technol Beijing, Sch Met & Ecol Engn, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-organic Frameworks; TEA; Gas sensing mechanism; GAS-SENSING PROPERTIES; ORGANIC FRAMEWORKS; CO3O4; SENSORS; HETEROJUNCTIONS; NANOSTRUCTURES; NANOFLOWERS; OXIDATION; SURFACE; OXYGEN;
D O I
10.1016/j.snb.2023.134727
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Metal-organic Frameworks (MOFs) are promising precursors and templates for the construction of porous micro/ nanostructures. In this work, we prepared a bimetallic MOFs-derived metal oxide Co3O4/In2O3 nanoparticles (NPs) gas sensor by hydrothermal method for the detection of TEA. The composition, microstructure and gas sensitivity of Co3O4/In2O3 NPs were investigated. The results show that Co3O4/In2O3 NPs have excellent response and selectivity to TEA. At 225 degrees C, the response of Co3O4/In2O3 NPs to 20 ppm TEA reaches 365.3, which is 30.2 times the response of the pristine In2O3. The reason for the improvement of the gas sensing performance of Co3O4/In2O3 NPs and the gas sensing mechanism were discussed in detail.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Bimetallic MOFs-Derived Metal Oxides Co3O4/SnO2 Microspheres for Ultrahigh Response n-Butanol Gas Sensors
    Zhang, Zhenkai
    Chen, Qiuying
    Guo, Yujun
    Dastan, Davoud
    Gao, Xiao-Chun
    Liu, Ying
    Tan, Xiao-Ming
    Wang, Feifei
    Yin, Xi-Tao
    Ren, Shan
    Ma, Xiaoguang
    LANGMUIR, 2024, 40 (39) : 20505 - 20514
  • [2] Surface engineering of MOFs-derived Co3O4 nanosheets for high-performance supercapacitor
    Yin, Xuemin
    Liu, Huimin
    Li, Kezhi
    Lu, Jinhua
    MATERIALS TECHNOLOGY, 2022, 37 (14) : 2976 - 2982
  • [3] Synthesis of MOFs-derived ZnO/In2O3 hollow microtubes to enhance TEA gas sensing performance
    Liu, Qingju (qjliu@ynu.edu.cn); Zhang, Jin (zhj@ynu.edu.cn), 1600, Elsevier Ltd (1012):
  • [4] Synthesis of MOFs-derived ZnO/In2O3 hollow microtubes to enhance TEA gas sensing performance
    Duan, Changyu
    Li, Yue
    Wang, Tao
    Wang, Ke
    Cao, Yuetong
    Li, Longyun
    Yang, Nan
    Zhang, Yumin
    Liu, Qingju
    Zhang, Jin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1012
  • [5] MOFs-derived ultrathin holey Co3O4 nanosheets for enhanced visible light CO2 reduction
    Chen, Weiyi
    Han, Bin
    Tian, Chen
    Liu, Xueming
    Liang, Shujie
    Deng, Hong
    Lin, Zhang
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2019, 244 : 996 - 1003
  • [6] MIL-68 derived In2O3 microtubes and Co3O4/In2O3 heterostructures for high sensitive formaldehyde gas sensors
    Kong, D. L.
    Wu, W. J.
    Hong, B.
    Xu, J. C.
    Peng, X. L.
    Ge, H. L.
    Li, J.
    Zeng, Y. X.
    Wang, X. Q.
    CERAMICS INTERNATIONAL, 2024, 50 (04) : 6995 - 7005
  • [7] Converting Organic Wastewater into CO Using MOFs-Derived Co/In2O3 Double-Shell Photocatalyst
    Liang, Qian
    Zhao, Shuang
    Li, Zhongyu
    Wu, Zhenyu
    Shi, Hong
    Huang, Hui
    Kang, Zhenhui
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) : 40754 - 40765
  • [8] MOFs-derived Co-doped In2O3 hollow hexagonal cylinder for selective detection of ethanol
    Yong, Peng
    Wang, Sheng
    Zhang, Xu
    Pan, Haibo
    Shen, Shuifa
    CHEMICAL PHYSICS LETTERS, 2022, 795
  • [9] Enhanced ethanol sensors based on MOF-derived ZnO/Co3O4 bimetallic oxides with high selectivity and improved stability
    Liu, Chaoqiang
    Li, Dengwang
    Tang, Wei
    VACUUM, 2023, 214
  • [10] The enhanced photocatalytic performance of Co3O4 nanoparticles/In2O3 nanotubes pn junction via dual MOFs template auxiliary
    Xiaoqing Xu
    Hui Li
    Lixin Que
    Jun Cao
    Jingjing Wang
    Yingying Zheng
    Chaorong Li
    Jiaqi Pan
    Journal of Materials Science: Materials in Electronics, 2023, 34