A deep implicit memory Gaussian network for time series forecasting

被引:2
|
作者
Zhang, Minglan [1 ]
Sun, Linfu
Zou, Yisheng
He, Songlin
机构
[1] Southwest Jiaotong Univ, Sch Comp & Artificial Intelligence, Chengdu 610031, Sichuan, Peoples R China
关键词
Deep memory kernel; Implicit features enhancement; Gaussian process regression; Long short term memory; Time series forecasting;
D O I
10.1016/j.asoc.2023.110878
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, significant achievements have been made in time series forecasting using deep learning methods, particularly the Long Short-Term Memory Network (LSTM). However, time series often exhibit complex patterns and relationships like trends, seasonal patterns and irregularities, and LSTM networks fail to effectively strengthen long-term dependence in time series data, which may lead to inaccurate forecasting effect or performance degradation. Therefore, building a model to explore the temporal dependence within the time series data completely still remains a challenge. In this paper, we propose a novel Deep Implicit Memory Gaussian (DIMG) Network based on bidirectional deep memory kernel process and the implicit features enhancement method for time series forecasting. We first use the implicit features enhancement method to obtain the hidden features of the data according to the nonlinear mapping characteristics of encoder. Then, a new deep learning process called bidirectional deep memory kernel has been developed, which merges the structural properties of deep learning with the adaptability of kernel methods to capture intricate information and memory structures in sequential data. This process fully encapsulates the structure of Bi-LSTM and Gaussian process regression (GPR). Finally, the performance of the proposed model is evaluated on two real-world datasets. The experimental results verify that our model outperforms other reported methods in terms of prediction accuracy.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A new deep intuitionistic fuzzy time series forecasting method based on long short-term memory
    Cem Kocak
    Erol Egrioglu
    Eren Bas
    The Journal of Supercomputing, 2021, 77 : 6178 - 6196
  • [42] Financial Time Series Forecasting with the Deep Learning Ensemble Model
    He, Kaijian
    Yang, Qian
    Ji, Lei
    Pan, Jingcheng
    Zou, Yingchao
    MATHEMATICS, 2023, 11 (04)
  • [43] MPM: Multi Patterns Memory Model for Short-Term Time Series Forecasting
    Wang, Dezheng
    Liu, Rongjie
    Chen, Congyan
    Li, Shihua
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 438 - 448
  • [44] Multistep Ahead Groundwater Level Time-Series Forecasting Using Gaussian Process Regression and ANFIS
    Raghavendra, N. Sujay
    Deka, Paresh Chandra
    ADVANCED COMPUTING AND SYSTEMS FOR SECURITY, VOL 2, 2016, 396 : 289 - 302
  • [45] A Multiscale Interactive Recurrent Network for Time-Series Forecasting
    Chen, Donghui
    Chen, Ling
    Zhang, Youdong
    Wen, Bo
    Yang, Chenghu
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (09) : 8793 - 8803
  • [46] TIME SERIES FORECASTING USING ARIMA AND NEURAL NETWORK APPROACHES
    Naidu, G. Mohan
    Reddy, B. Ravindra
    Murthy, B. Ramana
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (01): : 275 - 278
  • [47] Time Series Forecasting Based on Cloud Process Neural Network
    Bing Wang
    Shaohua Xu
    Xiaohong Yu
    Panchi Li
    International Journal of Computational Intelligence Systems, 2015, 8 : 992 - 1003
  • [48] A Generative Adversarial Network with Attention Mechanism for Time Series Forecasting
    Su, Min
    Du, Shengdong
    Hu, Jie
    Li, Tianrui
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 197 - 202
  • [49] An efficient neural network model for time series forecasting of malware
    Trong-Kha Nguyen
    Vu Duc Ly
    Hwang, Seong Oun
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (06) : 6089 - 6100
  • [50] A novel neural network ensemble architecture for time series forecasting
    Gheyas, Iffat A.
    Smith, Leslie S.
    NEUROCOMPUTING, 2011, 74 (18) : 3855 - 3864