Attention-Guided Multi-Scale Fusion Network for Similar Objects Semantic Segmentation

被引:0
|
作者
Yao, Fengqin [1 ]
Wang, Shengke [1 ]
Ding, Laihui [2 ]
Zhong, Guoqiang [1 ]
Li, Shu [1 ]
Xu, Zhiwei [2 ]
机构
[1] Ocean Univ China, Qingdao 266100, Peoples R China
[2] Shandong Willand Intelligent Technol Co Ltd, Qingdao 266100, Peoples R China
关键词
Semantic segmentation; Attention-guided; Multi-scale fusion; High inter-class similarity;
D O I
10.1007/s12559-023-10206-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Image segmentation accuracy is critical in marine ecological detection utilizing unmanned aerial vehicles (UAVs). By flying a drone around, we can swiftly determine the location of a variety of species. However, remote sensing photos, particularly those of inter-class items, are remarkably similar, and there are a significant number of little objects. The universal segmentation network is ineffective. This research constructs attentional networks that imitate the human cognitive system, inspired by camouflaged object detection and the management of human attentional mechanisms in the recognition of diverse things. This research proposes TriseNet, an attention-guided multi-scale fusion semantic segmentation network that solves the challenges of high item similarity and poor segmentation accuracy in UAV settings. To begin, we employ a bidirectional feature extraction network to extract low-level spatial and high-level semantic information. Second, we leverage the attention-induced cross-level fusion module (ACFM) to create a new multi-scale fusion branch that performs cross-level learning and enhances the representation of inter-class comparable objects. Finally, the receptive field block (RFB) module is used to increase the receptive field, resulting in richer characteristics in specific layers. The inter-class similarity increases the difficulty of segmentation accuracy greatly, whereas the three modules improve feature expression and segmentation results. Experiments are conducted using our UAV dataset, UAV-OUC-SEG (55.61% MIoU), and the public dataset, Cityscapes (76.10% MIoU), to demonstrate the efficacy of our strategy. In two datasets, the TriseNet delivers the best results when compared to other prominent segmentation algorithms.
引用
收藏
页码:366 / 376
页数:11
相关论文
共 50 条
  • [1] Attention-Guided Multi-Scale Fusion Network for Similar Objects Semantic Segmentation
    Fengqin Yao
    Shengke Wang
    Laihui Ding
    Guoqiang Zhong
    Shu Li
    Zhiwei Xu
    Cognitive Computation, 2024, 16 : 366 - 376
  • [2] DAG-Net: Dual-Branch Attention-Guided Network for Multi-Scale Information Fusion in Lung Nodule Segmentation
    Zhang, Bojie
    Zhu, Hongqing
    Wang, Ziying
    Luo, Lan
    Yu, Yang
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (06)
  • [3] Multi-scale attention fusion network for semantic segmentation of remote sensing images
    Wen, Zhiqiang
    Huang, Hongxu
    Liu, Shuai
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (24) : 7909 - 7926
  • [4] A hybrid attention multi-scale fusion network for real-time semantic segmentation
    Ye, Baofeng
    Xue, Renzheng
    Wu, Qianlong
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [5] Adaptive multi-scale dual attention network for semantic segmentation
    Wang, Weizhen
    Wang, Suyu
    Li, Yue
    Jin, Yishu
    NEUROCOMPUTING, 2021, 460 : 39 - 49
  • [6] BOUNDARY CORRECTED MULTI-SCALE FUSION NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION
    Jiang, Tianjiao
    Jin, Yi
    Liang, Tengfei
    Wang, Xu
    Li, Yidong
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1886 - 1890
  • [7] Semantic Segmentation Network Based on Adaptive Attention and Deep Fusion Utilizing a Multi-Scale Dilated Convolutional Pyramid
    Zhao, Shan
    Wang, Zihao
    Huo, Zhanqiang
    Zhang, Fukai
    SENSORS, 2024, 24 (16)
  • [8] MFFLNet: lightweight semantic segmentation network based on multi-scale feature fusion
    Wei Depeng
    Wang Huabin
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (10) : 30073 - 30093
  • [9] MFFLNet: lightweight semantic segmentation network based on multi-scale feature fusion
    Wei Depeng
    Wang Huabin
    Multimedia Tools and Applications, 2024, 83 : 30073 - 30093
  • [10] Point Cloud Semantic Segmentation Network Based on Multi-Scale Feature Fusion
    Du, Jing
    Jiang, Zuning
    Huang, Shangfeng
    Wang, Zongyue
    Su, Jinhe
    Su, Songjian
    Wu, Yundong
    Cai, Guorong
    SENSORS, 2021, 21 (05) : 1 - 20