The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series

被引:2
作者
Stone, Renata F. [1 ,2 ]
Loose, Lais H. [1 ]
Melo, Moizes S. [1 ,3 ]
Bayer, Fabio M. [1 ,2 ,4 ]
机构
[1] Univ Fed Santa Maria, Dept Estat, BR-97105900 Santa Maria, Brazil
[2] Univ Fed Santa Maria, Programa Posgrad Engn Prod, BR-97105900 Santa Maria, Brazil
[3] Univ Fed Rio Grande, Programa Posgrad Ambientometria, BR-96203900 Rio Grande, Brazil
[4] Univ Fed Santa Maria, Santa Maria Space Sci Lab LACESM, BR-97105900 Santa Maria, Brazil
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
CHARMA model; Chen distribution; forecast; time series;
D O I
10.3390/sym15091675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new dynamic model for time series based on the Chen distribution, which is useful for modeling asymmetric, positive, continuous, and time-dependent data. The proposed Chen autoregressive moving average (CHARMA) model combines the flexibility of the Chen distribution with the use of covariates and lagged terms to model the conditional median response. We introduce the CHARMA structure and discuss conditional maximum likelihood estimation, hypothesis testing inference along with the estimator asymptotic properties of the estimator, diagnostic analysis, and forecasting. In particular, we provide closed-form expressions for the conditional score vector and the conditional information matrix. We conduct a Monte Carlo experiment to evaluate the introduced theory in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications in a wind-speed and maximum-temperature time-series dataset.
引用
收藏
页数:19
相关论文
共 50 条
[21]   Adaptive Multi-Innovation Gradient Identification Algorithms for a Controlled Autoregressive Autoregressive Moving Average Model [J].
Xu, Ling ;
Xu, Huan ;
Ding, Feng .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (06) :3718-3747
[22]   Generalized Self-Organizing Mixture Autoregressive Model for Modeling Financial Time Series [J].
Yin, Hujun ;
Ni, He .
ARTIFICIAL NEURAL NETWORKS - ICANN 2009, PT I, 2009, 5768 :577-+
[23]   An algorithm for the exact likelihood of a stationary vector autoregressive-moving average model [J].
Mauricio, JA .
JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) :473-486
[24]   Signal detection and inference based on the beta binomial autoregressive moving average model [J].
Palm, Bruna G. ;
Bayer, Fabio M. ;
Cintra, Renato J. .
DIGITAL SIGNAL PROCESSING, 2021, 109 (109)
[25]   Bootstrap-based inferential improvements in beta autoregressive moving average model [J].
Palm, Bruna Gregory ;
Bayer, Fabio M. .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2018, 47 (04) :977-996
[26]   Generalized autoregressive and moving average models: multicollinearity, interpretation and a new modified model [J].
Esparza Albarracin, Orlando Yesid ;
Alencar, Airlane Pereira ;
Ho, Linda Lee .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (10) :1819-1840
[27]   Temperature Prediction of Electrical Equipment Based on Autoregressive Integrated Moving Average Model [J].
Zou, Ying ;
Wang, Ting ;
Xiao, Jiangwen ;
Feng, Xuan .
2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, :197-200
[28]   A Fuzzy Set-Valued Autoregressive Moving Average Model and Its Applications [J].
Wang, Dabuxilatu ;
Zhang, Liang .
SYMMETRY-BASEL, 2018, 10 (08)
[29]   Beta Autoregressive Moving Average Model with the Aranda-Ordaz Link Function [J].
Manchini, Carlos E. F. ;
Canterle, Diego Ramos ;
Pumi, Guilherme ;
Bayer, Fabio M. .
AXIOMS, 2024, 13 (11)
[30]   FUZZY AUTOREGRESSIVE RULES: TOWARDS LINGUISTIC TIME SERIES MODELING [J].
Luis Aznarte, Jose ;
Alcala-Fdez, Jesus ;
Arauzo, Antonio ;
Manuel Benitez, Jose .
ECONOMETRIC REVIEWS, 2011, 30 (06) :646-668