The Chen Autoregressive Moving Average Model for Modeling Asymmetric Positive Continuous Time Series

被引:1
|
作者
Stone, Renata F. [1 ,2 ]
Loose, Lais H. [1 ]
Melo, Moizes S. [1 ,3 ]
Bayer, Fabio M. [1 ,2 ,4 ]
机构
[1] Univ Fed Santa Maria, Dept Estat, BR-97105900 Santa Maria, Brazil
[2] Univ Fed Santa Maria, Programa Posgrad Engn Prod, BR-97105900 Santa Maria, Brazil
[3] Univ Fed Rio Grande, Programa Posgrad Ambientometria, BR-96203900 Rio Grande, Brazil
[4] Univ Fed Santa Maria, Santa Maria Space Sci Lab LACESM, BR-97105900 Santa Maria, Brazil
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 09期
关键词
CHARMA model; Chen distribution; forecast; time series;
D O I
10.3390/sym15091675
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we introduce a new dynamic model for time series based on the Chen distribution, which is useful for modeling asymmetric, positive, continuous, and time-dependent data. The proposed Chen autoregressive moving average (CHARMA) model combines the flexibility of the Chen distribution with the use of covariates and lagged terms to model the conditional median response. We introduce the CHARMA structure and discuss conditional maximum likelihood estimation, hypothesis testing inference along with the estimator asymptotic properties of the estimator, diagnostic analysis, and forecasting. In particular, we provide closed-form expressions for the conditional score vector and the conditional information matrix. We conduct a Monte Carlo experiment to evaluate the introduced theory in finite sample sizes. Finally, we illustrate the usefulness of the proposed model by exploring two empirical applications in a wind-speed and maximum-temperature time-series dataset.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Using Autoregressive Integrated Moving Average (ARIMA) for Prediction of Time Series Data
    Borkin, Dmitrii
    Nemeth, Martin
    Nemethova, Andrea
    INTELLIGENT SYSTEMS APPLICATIONS IN SOFTWARE ENGINEERING, VOL 1, 2019, 1046 : 470 - 476
  • [2] Prediction intervals in the beta autoregressive moving average model
    Palm, Bruna Gregory
    Bayer, Fabio M.
    Cintra, Renato J.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (08) : 3635 - 3656
  • [3] Autoregressive Moving Average Modeling in the Financial Sector
    Li, Peihao
    Jing, Chaoqun
    Liang, Tian
    Liu, Mingjia
    Chen, Zhenglin
    Guo, Li
    2015 2ND INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY, COMPUTER, AND ELECTRICAL ENGINEERING (ICITACEE), 2015, : 68 - 71
  • [4] Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India
    Kulkarni G.E.
    Muley A.A.
    Deshmukh N.K.
    Bhalchandra P.U.
    Modeling Earth Systems and Environment, 2018, 4 (4) : 1435 - 1444
  • [5] Network vector autoregressive moving average model
    Chen, Xiao
    Chen, Yu
    Hu, Xixu
    STATISTICS AND ITS INTERFACE, 2023, 16 (01) : 593 - 615
  • [6] On a partly linear autoregressive model with moving average errors
    Bianco, Ana
    Boente, Graciela
    JOURNAL OF NONPARAMETRIC STATISTICS, 2010, 22 (06) : 797 - 820
  • [7] MODELING OF AN EPIDEMIOLOGIC TIME-SERIES BY A THRESHOLD AUTOREGRESSIVE MODEL
    WATIER, L
    RICHARDSON, S
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1995, 44 (03) : 353 - 364
  • [8] Bayesian modeling and forecasting of vector autoregressive moving average processes
    Shaarawy, Samir M.
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (11) : 3795 - 3815
  • [9] Forecasting New Tuberculosis Cases in Malaysia: A Time-Series Study Using the Autoregressive Integrated Moving Average (ARIMA) Model
    Rashid, Mohd Ariff Ab
    Zaki, Rafdzah Ahmad
    Mahiyuddin, Wan Rozita Wan
    Yahya, Abqariyah
    CUREUS JOURNAL OF MEDICAL SCIENCE, 2023, 15 (09)
  • [10] Time Series Properties of the Class of Generalized First-Order Autoregressive Processes with Moving Average Errors
    Shitan, Mahendran
    Peiris, Shelton
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (13) : 2259 - 2275