The Performance of a Deep Learning-Based Automatic Measurement Model for Measuring the Cardiothoracic Ratio on Chest Radiographs

被引:2
|
作者
Kim, Donguk [1 ]
Lee, Jong Hyuk [2 ]
Jang, Myoung-jin [3 ]
Park, Jongsoo [2 ,4 ]
Hong, Wonju [2 ,5 ]
Lee, Chan Su [6 ]
Yang, Si Yeong [6 ]
Park, Chang Min [1 ,2 ,7 ]
机构
[1] Seoul Natl Univ, Inst Med & Biol Engn, Med Res Ctr, 101 Daehak Ro, Seoul 03080, South Korea
[2] Seoul Natl Univ, Coll Med, Dept Radiol, Seoul Natl Univ Hosp, 101 Daehak Ro, Seoul 03080, South Korea
[3] Seoul Natl Univ Hosp, Med Res Collaborating Ctr, 101 Daehak Ro, Seoul 03080, South Korea
[4] Yeungnam Univ, Coll Med, Dept Radiol, 170 Hyeonchung Ro, Daegu 42415, South Korea
[5] Hallym Univ, Sacred Heart Hosp, Dept Radiol, Anyang Si 14068, Gyeonggi Do, South Korea
[6] HealthHub Co Ltd, Ctr Artificial Intelligence Med & Imaging, 623 Gangnam Daero, Seoul 06524, South Korea
[7] Seoul Natl Univ, Med Res Ctr, Inst Radiat Med, 101 Daehak Ro, Seoul 03080, South Korea
来源
BIOENGINEERING-BASEL | 2023年 / 10卷 / 09期
关键词
chest radiographs; cardiothoracic ratio; deep learning; artificial intelligence; validation;
D O I
10.3390/bioengineering10091077
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Objective: Prior studies on models based on deep learning (DL) and measuring the cardiothoracic ratio (CTR) on chest radiographs have lacked rigorous agreement analyses with radiologists or reader tests. We validated the performance of a commercially available DL-based CTR measurement model with various thoracic pathologies, and performed agreement analyses with thoracic radiologists and reader tests using a probabilistic-based reference. Materials and Methods: This study included 160 posteroanterior view chest radiographs (no lung or pleural abnormalities, pneumothorax, pleural effusion, consolidation, and n = 40 in each category) to externally test a DL-based CTR measurement model. To assess the agreement between the model and experts, intraclass or interclass correlation coefficients (ICCs) were compared between the model and two thoracic radiologists. In the reader tests with a probabilistic-based reference standard (Dawid-Skene consensus), we compared diagnostic measures-including sensitivity and negative predictive value (NPV)-for cardiomegaly between the model and five other radiologists using the non-inferiority test. Results: For the 160 chest radiographs, the model measured a median CTR of 0.521 (interquartile range, 0.446-0.59) and a mean CTR of 0.522 +/- 0.095. The ICC between the two thoracic radiologists and between the model and two thoracic radiologists was not significantly different (0.972 versus 0.959, p = 0.192), even across various pathologies (all p-values > 0.05). The model showed non-inferior diagnostic performance, including sensitivity (96.3% versus 97.8%) and NPV (95.6% versus 97.4%) (p < 0.001 in both), compared with the radiologists for all 160 chest radiographs. However, it showed inferior sensitivity in chest radiographs with consolidation (95.5% versus 99.9%; p = 0.082) and NPV in chest radiographs with pleural effusion (92.9% versus 94.6%; p = 0.079) and consolidation (94.1% versus 98.7%; p = 0.173). Conclusion: While the sensitivity and NPV of this model for diagnosing cardiomegaly in chest radiographs with consolidation or pleural effusion were not as high as those of the radiologists, it demonstrated good agreement with the thoracic radiologists in measuring the CTR across various pathologies.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Deep Learning-Based Methods for Automatic Diagnosis of Skin Lesions
    El-Khatib, Hassan
    Popescu, Dan
    Ichim, Loretta
    SENSORS, 2020, 20 (06)
  • [42] Deep Learning-Based Detection of Periapical Lesions in Periapical Radiographs
    Liu, Jian
    Hong, Yanqing
    Shao, Yu
    Gao, Yongzhen
    Pan, Kexu
    Jin, Chaoran
    Du, Yi
    Yu, Xijiao
    JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, 2024, 44 (05) : 676 - 684
  • [43] Automatic detection of COVID-19 from chest radiographs using deep learning
    Pandit, M. K.
    Banday, S. A.
    Naaz, R.
    Chishti, M. A.
    RADIOGRAPHY, 2021, 27 (02) : 483 - 489
  • [44] Test-retest reproducibility of a deep learning-based automatic detection algorithm for the chest radiograph
    Kim, Hyungjin
    Park, Chang Min
    Goo, Jin Mo
    EUROPEAN RADIOLOGY, 2020, 30 (04) : 2346 - 2355
  • [45] Deep learning-based bone suppression in chest radiographs using CT-derived features: a feasibility study
    Ren, Ge
    Xiao, Haonan
    Lam, Sai-Kit
    Yang, Dongrong
    Li, Tian
    Teng, Xinzhi
    Qin, Jing
    Cai, Jing
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (12) : 4807 - 4819
  • [46] Deep Learning-Based Algorithm for the Detection and Characterization of MRI Safety of Cardiac Implantable Electronic Devices on Chest Radiographs
    Kim, Ue-Hwan
    Kim, Moon Young
    Park, Eun-Ah
    Lee, Whal
    Lim, Woo-Hyun
    Kim, Hack-Lyoung
    Oh, Sohee
    Jin, Kwang Nam
    KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (11) : 1918 - 1928
  • [47] Deep learning-based automatic detection of tuberculosis disease in chest X-ray images
    Showkatian, Eman
    Salehi, Mohammad
    Ghaffari, Hamed
    Reiazi, Reza
    Sadighi, Nahid
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E118 - E124
  • [48] A deep learning-based automatic tool for measuring the lengths of linear scars: forensic applications
    Zhou, Jian
    Zhou, Zhilu
    Chen, Xinjian
    Shi, Fei
    Xia, Wentao
    FORENSIC SCIENCES RESEARCH, 2023, 8 (01) : 41 - 49
  • [49] A deep learning-based algorithm for pulmonary tuberculosis detection in chest radiography
    Chen, Chiu-Fan
    Hsu, Chun-Hsiang
    Jiang, You-Cheng
    Lin, Wen-Ren
    Hong, Wei-Cheng
    Chen, I. -Yuan
    Lin, Min-Hsi
    Chu, Kuo-An
    Lee, Chao-Hsien
    Lee, David Lin
    Chen, Po-Fan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [50] Deep learning-based algorithm for assessment of knee osteoarthritis severity in radiographs matches performance of radiologists
    Swiecicki, Albert
    Li, Nianyi
    O'Donnell, Jonathan
    Said, Nicholas
    Yang, Jichen
    Mather, Richard C.
    Jiranek, William A.
    Mazurowski, Maciej A.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 133