Modulation of potassium transport to increase abiotic stress tolerance in plants

被引:29
|
作者
Mulet, Jose M. [1 ]
Porcel, Rosa [1 ]
Yenush, Lynne [1 ]
机构
[1] Univ Politecn Valencia, CSIC, Inst Biol Mol & Celular Plantas, Valencia, Spain
关键词
Crop plants; drought tolerance; ion homeostasis; potassium channels; salt tolerance; stomatal opening; ENHANCES SALT TOLERANCE; MEMBRANE H+-ATPASE; NUCLEOTIDE-GATED CHANNEL; PROTEIN-KINASE CIPK23; AFFINITY K+ UPTAKE; GUARD-CELL; ABSCISIC-ACID; PLASMA-MEMBRANE; ARABIDOPSIS-THALIANA; CYCLIC-NUCLEOTIDE;
D O I
10.1093/jxb/erad333
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level. This review summarizes current knowledge of potassium homeostasis in plants and how it has been used to develop novel crops with improved abiotic stress tolerance.
引用
收藏
页码:5989 / 6005
页数:17
相关论文
共 50 条
  • [31] FUNCTIONS OF POLYAMINES IN THE REGULATION OF ABIOTIC STRESS TOLERANCE IN PLANTS
    Alqurashi, M.
    APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2023, 21 (05): : 4977 - 4989
  • [32] Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses
    Naing, Aung Htay
    Kim, Chang Kil
    PHYSIOLOGIA PLANTARUM, 2021, 172 (03) : 1711 - 1723
  • [33] Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance
    Ishikawa, Tetsuya
    Cuin, Tracey Ann
    Bazihizina, Nadia
    Shabala, Sergey
    MEMBRANE TRANSPORT IN PLANTS, 2018, 87 : 267 - 301
  • [34] Aquaporins Responses under Challenging Environmental Conditions and Abiotic Stress Tolerance in Plants
    Gautam, Arti
    Pandey, Akhilesh Kumar
    BOTANICAL REVIEW, 2021, 87 (04) : 467 - 495
  • [35] Transcriptomics of Biostimulation of Plants Under Abiotic Stress
    Gonzalez-Morales, Susana
    Solis-Gaona, Susana
    Valdes-Caballero, Marin Virgilio
    Juarez-Maldonado, Antonio
    Loredo-Trevino, Araceli
    Benavides-Mendoza, Adalberto
    FRONTIERS IN GENETICS, 2021, 12
  • [36] Phytochrome type B family: The abiotic stress responses signaller in plants
    Silva Junior, Carlos Alberto
    D'Amico-Damiao, Victor
    Carvalho, Rogerio Falleiros
    ANNALS OF APPLIED BIOLOGY, 2021, 178 (02) : 135 - 148
  • [37] Advances in Physiochemical and Molecular Mechanisms of Abiotic Stress Tolerance in Plants
    Saleem, Muhammad Hamzah
    Mfarrej, Manar Fawzi Bani
    Khan, Khalid Ali
    Ercisli, Sezai
    Elsharkawy, Mohsen Mohamed
    Fahad, Shah
    JOURNAL OF CROP HEALTH, 2024, 76 (04) : 753 - 767
  • [38] Abiotic Stress Tolerance in Plants: Myriad Roles of Ascorbate Peroxidase
    Pandey, Saurabh
    Fartyal, Dhirendra
    Agarwal, Aakrati
    Shukla, Tushita
    James, Donald
    Kaul, Tanushri
    Negi, Yogesh K.
    Arora, Sandeep
    Reddy, Malireddy K.
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [39] Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects
    Bhatnagar-Mathur, Pooja
    Vadez, V.
    Sharma, Kiran K.
    PLANT CELL REPORTS, 2008, 27 (03) : 411 - 424
  • [40] Current perspectives of lncRNAs in abiotic and biotic stress tolerance in plants
    Jin, Xin
    Wang, Zemin
    Li, Xuan
    Ai, Qianyi
    Wong, Darren Chern Jan
    Zhang, Feiyan
    Yang, Jiangwei
    Zhang, Ning
    Si, Huaijun
    FRONTIERS IN PLANT SCIENCE, 2024, 14