Entropy Generation Analysis on MHD Ag plus Cu/Blood Tangent Hyperbolic Hybrid Nanofluid Flow Over a Porous Plate

被引:6
|
作者
Reddy, S. R. R. [1 ]
Ramasekhar, Gunisetty [2 ]
Suneetha, S. [3 ]
Jakeer, Shaik [4 ]
机构
[1] Koneru Lakshmaiah Educ Fdn, Dept Math, Hyderabad 500043, Telangana, India
[2] RGM Coll Engn & Technol, Dept Math, Nandyal 518501, Andhra Pradesh, India
[3] Yogi Vemana Univ, Dept Appl Math, Kadapa 516005, Andhra Pradesh, India
[4] Chennai Inst Technol, Ctr Computat Modeling, Chennai 600069, Tamil Nadu, India
来源
关键词
Entropy generation; MHD; thermal radiation; porous plate; hybrid nanofluid; HEAT-TRANSFER ENHANCEMENT; STRETCHING SHEET; SOLAR COLLECTOR; INCLINED PLATE;
D O I
10.1142/S2737416523500473
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study is motivated by the vital role of dissipating thermal energy in the physiological system where energy depletion can lead to severe health complications. These complications encompass a range of issues, including sudden death, anemia, hypothermia, blood pressure fluctuations and the necessity for cardiac surgery. Biomedical engineers and clinicians have recognized the significance of analyzing entropy generation to quantify energy loss in biological systems. Furthermore, this study acknowledges the importance of understanding the thermodynamic state of entropy generation, particularly in evaluating cancer cells during chemotherapy treatment and enhancing heat transfer in tissues. The primary objective of this study is to evaluate the heat transfer characteristics of a magnetohydrodynamic (MHD) tangent hyperbolic hybrid nanofluid near a heat source and thermal radiation as it flows over a porous plate. The research methodology utilizes the MATLAB program bvp4c for solving the momentum and temperature equations. These equations are subsequently transformed into ordinary differential equations using the appropriate self-similarity variables. An elevation in the heat source parameter leads to heightened internal energy of liquid particles, resulting in an increase in temperature. Additionally, the magnetic field parameter is directly proportional to the entropy generation; as it increases, so does the entropy generation. Moreover, nanoparticles, owing to their high surface area-to-volume ratio, have the capacity to hinder heat transport within the fluid. The specific application of this study lies in the field of biomedical engineering and clinical practices. The findings can contribute to developing advanced heat-transfer techniques for medical applications, such as improving chemotherapy treatments for cancer cells and enhancing tissue heat-transfer efficiency. Moreover, using silver and copper nanoparticles as heat-transfer agents could hold promise in treating blood-related health conditions and facilitating the healing of injured tissue.
引用
收藏
页码:881 / 895
页数:15
相关论文
共 50 条
  • [21] ENTROPY ANALYSIS OF HYBRID NANOFLUID FLOW OVER A ROTATING POROUS DISK: A MULTIVARIATE ANALYSIS
    Prakash, J.
    Tripathi, Dharmendra
    Akkurt, Nevzat
    Shedd, Tim
    Special Topics and Reviews in Porous Media, 2023, 14 (04): : 45 - 69
  • [22] ENTROPY ANALYSIS OF HYBRID NANOFLUID FLOW OVER A ROTATING POROUS DISK: A MULTIVARIATE ANALYSIS
    Prakash, J.
    Tripathi, Dharmendra
    Akkurt, Nevzat
    Shedd, Tim
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2023, 14 (04) : 45 - 69
  • [23] Entropy generation and porosity effects on MHD hybrid nanofluid mixed convective flow over an inclined plate in the presence of thermophoresis and heat flux
    Sahoo, Chandra Sekhar
    Swain, Bharat Keshari
    Das, Manjula
    Dash, G. C.
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2025, 47 (03)
  • [24] Entropy formation analysis of MHD boundary layer flow of nanofluid over a porous shrinking wall
    Rashid, I.
    Sagheer, M.
    Hussain, S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2019, 536
  • [25] Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid
    Rashidi, M. M.
    Abelman, S.
    Mehr, N. Freidooni
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 62 : 515 - 525
  • [26] Entropy generation optimization and activation energy in nonlinear mixed convection flow of a tangent hyperbolic nanofluid
    Khan, M. Ijaz
    Khan, Tufail A.
    Qayyum, Sumaira
    Hayat, T.
    Khan, Muhammad Imran
    Alsaedi, A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (08):
  • [27] Entropy generation optimization and activation energy in nonlinear mixed convection flow of a tangent hyperbolic nanofluid
    M. Ijaz Khan
    Tufail A. Khan
    Sumaira Qayyum
    T. Hayat
    Muhammad Imran Khan
    A. Alsaedi
    The European Physical Journal Plus, 133
  • [28] Entropy generation analysis in MHD hybrid nanofluid flow: Effect of thermal radiation and chemical reaction
    Vijay, Neha
    Sharma, Kushal
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2023, 84 (01) : 66 - 82
  • [29] Thermal and solutal stratification on MHD nanofluid flow over a porous vertical plate
    Kandasamy, R.
    Dharmalingam, R.
    Prabhu, K. K. Sivagnana
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (01) : 121 - 130
  • [30] Numerical investigation of MHD flow of hyperbolic tangent nanofluid over a non-linear stretching sheet
    Ahmed, Iftikhar
    Alghamdi, Metib
    Amjad, Muhammad
    Aziz, Faisal
    Akbar, Tanvir
    Muhammad, Taseer
    HELIYON, 2023, 9 (07)