Monte Carlo simulation for proton dosimetry in magnetic fields: Fano test and magnetic field correction factors kB for Farmer-type ionization chambers

被引:2
|
作者
Marot, M. [1 ,2 ,3 ,4 ]
Jaeger, F. [1 ,5 ]
Greilich, S. [6 ]
Karger, C. P. [1 ,3 ,4 ]
Jaekel, O. [1 ,3 ,4 ,7 ]
Burigo, L. N. [1 ,3 ,4 ]
机构
[1] German Canc Res Ctr, Med Phys Radiat Oncol, Heidelberg, Germany
[2] Heidelberg Univ, Fac Med, Heidelberg, Germany
[3] Heidelberg Inst Radiat Oncol HIRO, Heidelberg, Germany
[4] Natl Ctr Radiat Res Oncol NCRO, Heidelberg, Germany
[5] Heidelberg Univ, Fac Phys & Astron, Heidelberg, Germany
[6] Berthold Technol GmbH & Co KG, Business Units Radiat Protect Bioanalyt, Bad Wildbad, Germany
[7] Univ Hosp Heidelberg, Heidelberg Ion Beam Therapy Ctr HIT, Heidelberg, Germany
关键词
TOPAS; MR-guided proton therapy; dosimetry; magnetic field; magnetic field correction factor; ELECTRON-TRANSPORT ALGORITHM; CHARGED-PARTICLE TRANSPORT; RADIOTHERAPY; EGSNRC;
D O I
10.1088/1361-6560/acefa1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. In this contribution we present a special Fano test for charged particles in presence of magnetic fields in theMCcode TOol for PArticle Simulation (TOPAS), as well as the determination of magnetic field correction factors k(B) for Farmer-type ionization chambers using proton beams. Approach. CustomizedC++ extensions for TOPAS were implemented to model the special Fano tests in presence of magnetic fields for electrons and protons. The Geant4-specific transport parameters, DRoverR and finalRange, were investigated to optimize passing rate and computation time. The k(B) was determined for the Farmer-typePTW30013 ionization chamber, and 5 custom built ionization chambers with same geometry but varying inner radius, testing magnetic flux density ranging from 0 to 1.0 T and two proton beam energies of 157.43 and 221.05 MeV. Main results. Using the investigated parameters, TOPAS passed the Fano test within 0.39 +/- 0.15% and 0.82 +/- 0.42%, respectively for electrons and protons. The chamber response (k(B,M,Q)) gives a maximum at different magnetic flux densities depending of the chamber size, 1.0043 at 1.0 T for the smallest chamber and 1.0051 at 0.2 T for the largest chamber. The local dose difference c(B) remained <= 0.1% for both tested energies. The magnetic field correction factor k(B), for the chamberPTW30013, varied from 0.9946 to 1.0036 for both tested energies. Significance. The developed extension for the special Fano test in TOPASMC code with the adjusted transport parameters, can accurately transport electron and proton particles in magnetic field. This makes TOPAS a valuable tool for the determination of kB. The ionization chambers we tested showed that k(B) remains small (<= 0.72%). To the best of our knowledge, this is the first calculations of k(B) for proton beams. This work represents a significant step forward in the development of MRgPT and protocols for proton dosimetry in presence of magnetic field.
引用
收藏
页数:19
相关论文
共 19 条
  • [1] Radiation dosimetry in magnetic fields with Farmer-type ionization chambers: determination of magnetic field correction factors for different magnetic field strengths and field orientations
    Spindeldreier, C. K.
    Schrenk, O.
    Bakenecker, A.
    Kawrakow, I.
    Burigo, L.
    Karger, C. P.
    Greilich, S.
    Pfaffenberger, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2017, 62 (16) : 6708 - 6728
  • [2] Proton beam dosimetry in the presence of magnetic fields using Farmer-type ionization chambers of different radii
    Marot, Mathieu
    Surla, Sonja
    Burke, Elisa
    Brons, Stephan
    Runz, Armin
    Greilich, Steffen
    Karger, Christian P.
    Jaekel, Oliver
    Burigo, Lucas N.
    MEDICAL PHYSICS, 2023, 50 (07) : 4590 - 4599
  • [3] Calculations of magnetic field correction factors for ionization chambers in a transverse magnetic field using Monte Carlo code TOPAS
    Mao, Lingli
    Pei, Xi
    Chao, Tsi-Chian
    Xu, Xie George
    RADIATION PHYSICS AND CHEMISTRY, 2021, 183
  • [4] Carbon ion beam dosimetry in magnetic fields using Farmer-type ionization chambers of different radii: measurements and simulations
    Surla, S.
    Marot, M.
    Burigo, L.
    Brons, S.
    Runz, A.
    Karger, C. P.
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (20)
  • [5] Monte Carlo study of ionization chamber magnetic field correction factors as a function of angle and beam quality
    Malkov, Victor N.
    Rogers, D. W. O.
    MEDICAL PHYSICS, 2018, 45 (02) : 908 - 925
  • [6] Experimental and Monte Carlo-based determination of magnetic field correction factors kB,Q$k_{B,Q}$ in high-energy photon fields for two ionization chambers
    Alissa, Mohamad
    Zink, Klemens
    Kapsch, Ralf-Peter
    Schoenfeld, Andreas A. A.
    Frick, Stephan
    Czarnecki, Damian
    MEDICAL PHYSICS, 2023, 50 (07) : 4578 - 4589
  • [7] Monte Carlo calculation of beam quality correction factors in proton beams using detailed simulation of ionization chambers
    Goma, Carles
    Andreo, Pedro
    Sempau, Josep
    PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (06) : 2389 - 2406
  • [8] Monte Carlo simulated beam quality and perturbation correction factors for ionization chambers in monoenergetic proton beams
    Kretschmer, Jana
    Dulkys, Anna
    Brodbek, Leonie
    Stelljes, Tenzin Sonam
    Looe, Hui Khee
    Poppe, Bjoern
    MEDICAL PHYSICS, 2020, 47 (11) : 5890 - 5905
  • [9] Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors
    O'Brien, D. J.
    Roberts, D. A.
    Ibbott, G. S.
    Sawakuchi, G. O.
    MEDICAL PHYSICS, 2016, 43 (08) : 4915 - 4927
  • [10] Investigation of ionization chamber perturbation factors using proton beam and Fano cavity test for the Monte Carlo simulation code PHITS
    Nagake, Yuya
    Yasui, Keisuke
    Ooe, Hiromu
    Ichihara, Masaya
    Iwase, Kaito
    Toshito, Toshiyuki
    Hayashi, Naoki
    RADIOLOGICAL PHYSICS AND TECHNOLOGY, 2024, 17 (01) : 280 - 287